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ABSTRACT

The formal specification language Spec is used for writing black-box specifications

for large software systems. These black-box specifications describe the interface

between a system and its users, as well as internal interfaces between modules. Systems

analysts use specifications written in Spec to verify the customer's requirements during

the development of a software system.

Ti.s thesis demons",.tcs the feas'Oit,- of designing and implementing it hynt4x

directed editor for a subset of the specification language Spec. The editor is a software

tool for writing Spec specifications that ensures syntactic correctness of such specifi-

cations. The syntax directed editor is created using the Synthesizer Generator, a

Computer-Aided Software Engineering (CASE) tool for generating language-based

editors. The specification for the editor is written in the Synthesizer Specification

Language (SSL) which is based on an attribute grammar. The software tool developed in

this thesis supports the Requirements Analysis phase of the software development cycle.
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I. INTRODUCTION

A. OVERVIEW

Spec is a formal specification language designed to write black-box specifications of

software systems. These black-box specifications describe the interface between a

system and its users as well as internal interfaces between modules. Specifications

written in Spec are used by systems analysts to verify the customer's requirements. The

specification is then translated into an appropriate programming language (such as Ada)

by programmers.

Currently, Spec is a research tool with the potential to become an industry standard in

software development. An eventual goal is to create an integrated environment of

software tools for Spec. These tools would include an editor, type checker, consistency

checker, inheritance expander, pretty printer, test oracle, diagram generator and a

translator to Ada.

A syntax directed editor is the primary tool of such an integrated environment. The

user is guaranteed a syntactically correct Spec specification at the end of each editing

session. By ensuring syntactic correctness as the specification is being designed/edited,

the overall time spent designing the system is reduced.

This thesis discusses the development of SPECDEF, a syntax directed editor for a

subset of the Spec specification language. Chapter 1 gives a general description of a

syntax directed editor and compares two primary editor generator systems. Chapter mU is



a description of the Spec language. The complete Spec grammar appears in Appendix A.

Chapter IV details the concepts behind the Synthesizer Generator, design decisions, and a

practical approach to designing a syntax directed editor specification. The specification

files for the SPECDEF editor appear in Appendix B. A user's manual for the SPECDEF

editor appears in Appendix C, and a listing of all editor system commands appears in

Appendix D.

B. DESCRIPTION OF SOFITWARE ENGINEERING PRINCIPLES

Computers are playing an increasingly large role in our lives. Many manufacturing

processes are being automated. retail and grocery stores have computerized pricing and

inventory systems, banks are providing automatic teller machines, travel agents make our

plane reservations through computers, etc. In order for these and other computer systems

to perform useful tasks, reliable and efficient software is required.

Software engineering applies scientific and mathematical principles to the develop-

ment of software in order to make computers useful to people. Software consists of the

actual programs. an oocumentauun and user's guidcs, cpcrating pocedures and test cases

that are associated with a computer-based system. A primary goal of software engi-

neerui2n it the devclopment of effective scientific methods for producing software that

meets the customer's schedule and budget constraints while satisfying all his require-

ments for the software system. IRef. I I

Computers can perform tasks that are repetitious, too time consuming, or too

complicated for people to do manually, and they can usually perform those tasks faster,

with greater reliability, more efficiently and at a lower cost than people can. In order for



computers to be useful, the software system designed for the customer must be able to

perform all functions required by the user in a correct and efficient manner. An' failure

of the system to operate correctly could be costly in terms of lives, equipment. and

money. Software systems should not only be "correct", i.e., conform to the specification,

but also should perform :he functions desired by the customer. Correct but inappropriate

systems are sometimes built because the software developers did not understand the

user's needs, or the software cannot adapt to changes in those needs. [Ref. 1)

Hardware prices have decreased by about 50% roughly every two years. This in turn

has triggered a demand for larger, more sophisticated computer applications. It is

impossible for a single person to understand or to build large and complex software

svsterns. Therefore, a software development organization is needed. The system must be

organized as a set of modules that are small enough to be developed by a single person.

Each of the developers in the organization mvvt communicate with the other developers.

either directly or t rough documentation. This documentation must be precise so that all

developers on the project team have a complete and correct under-standing of the

interface between the module(s) they are developing. In addition to this formal

documentation, communication is extremely important, particularly in large prejects,

where project members come and go. [Ref. 1]

The software development process consists of a cycle of qualitative activities:

requirements analysis, functional specification, architectural design, implementation. and

evolution. The development will proceed most efficiently if these activities are per-

formed in a pipeline fashion. However, each activity does not necessarily end when the

3



next begins. Ofte-. insights are gained at later stages that trigger modifications or

extensions w," earlier results. Therefore, feedback is essential. The relationship between

acti-vities of the software development cycle is illustrated in Figure 1.

Requirements analysis is the process of determining and documenting the customer's

needs. The purpose of the system, as w(1 as any constraints on its development, is

determined at this stage. A systems interface is proposed and formalized in the

functional specification stage. This interface only describes those aspects of the system

behavior that are visible to the user or to other external systems. The system is then

decomposed into modules in the architectural design phase. Internal interfaces, i.e., those

not visible to the user, are defined here. Implementation is the production of a program

for each of the modules. The data structures and algorithms used within each module are

defined here. Finally, the evolution, or repair process, allows for adaptation of the

system to changing needs of the customer. Any discrepancies between the specification

and the impleuentation that are discovered after system delivery are repaired here, and

the capabilities of the system are expanded as new requirements are discovered. This

evolution requires repeating the previous four steps of the software development cycle.

[Ref, 1]

The SPECDEF editor will be useful mostly in the requirements analysis phase of the

software development cycle, and to a lesser extent in the functional specification and

architectural design phases.

4
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Functional Specification

Evolution

Architectural Design
4

Implementation

Figure 1
Software Development Cycle

Thorough analysis and testing of each module is absolutely necessary if a "correct"

system is to be developed. A project database should be utilized to record and distribute

all information about the state of the development process. This database will contain a

variety of documents, including the requirements, designs, justifications for those

designs, the code. test cases and results, user's manuals, the schedule of the development

project. work assignments, etc. The larger the system, the larger the database, and the

greater the need for a database management system. For engineering applications, a

specialized engineering database system is required to efficiently manage the project

database. This is a relatively new development, and mature systems are not yet widely

available. Future versions of SPECDEF should interface to this design database. [Ref. 1]



C. COMPUTER-AIDED SOFTWARE ENGINEERING (CASE)

The time spent in the requirements analysis, functional specification and architectural

design stages of the software development cycle has been greatly reduced by the

advancements made in computer-aided software engineering (CASE) tools. These tools

assist the systems analyst and software engineer in specifying the system's requirements

and design. Many of the design and development problems inherent in medium to large

software projects are reduced or eliminated by the use of CASE tools. [Ref. 21

Some CASE tools can automatically generate code from the software design

specification. Two benefits are achieved from this. First, the implementation time is

substantially reduced since the code (or at least part of it) is being generated automa-

tically. Secondly, the software engineer may feel more confident about the quality of the

generated code because it was produced by a software tool that has itself been thoroughly

tested and debugged. [Ref. 2)

Truly generalized code generation is not available in any of today's general-purpose

tools. However, specialty development tools that focus on a particular type of software,

such as user interface design tools, are available that will generate code. This thesis will

discuss the use of one such tool. the Synthesizer Generator, which generates a syntax

directed editor program. This generated program is in fact another example of a CASE

tool.

In general, CASE tools are designed to increase the productivity of systems analysts

and software en(<F r 's. Man), of these tools are actually requirements and design

specification editors ,at irovide output in specific formats, often graphically oriented,

6



that can be read and understood by end-users and developers alike. They eliminate the

drudgery of drawing and redrawing data flow diagrams, module hierarchy charts, etc.,

that often change as the project development proceeds. Time is saved and formats are

consistent. Future versions of the SPECDEF editor should interface with tools for

generating such diagrams and other summary information. [Ref. 2]

D. FOURTH-GENERATION LANGUAGES

The term "fourth-generation language" can be looked at in two different ways. Some

authors use the term to refer to application generator programs. Applications generators

are software tools that take a design specification as input and produce compilable code

as output- When used in this context, the "fourth-generation language" in not always a

programming language in the sense that a programming language is intended to describe

a program [Ref. 3]. This context includes many CASE tools, such as program generators.

Fourth-generation languages in this context are sometimes thought of as higher-level

focused languages that provide mechanisms for accessing data bases [Ref. 2]. Many

software professionals., think of fourth-generation languages as a form of CASE [Ref. 2].

Other authors, when referring to "fourth-generation languages," mean a particular

class of modern programming languages, including Ada. Fourth-generation

programming languages provide mechanisms for data abstraction. An encapsulation

facility supports the separation of the specification and definition of data structures,

information hiding, ari name access by mutual consent. A facility for passing messages

between concurrent tasks to maintain synchronization and communication supports

concurrent programming. [Ref. 31
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A software crisis developed in the mid 1970's because software development had

become labor intensive rather than a labor-saving activity. There were problems with

responsiveness of computer systems to customers' needs, reliability of software, escal-

ating software development costs, maintainability of software systems, timeliness of

development of software systems, transportability of software from one operating envi-

ronment to another, and efficiency of the software in terms of processing time and

memory space. Software systems were becoming increasingly larger and more complex.

The most popular programming languages at that time, FORTRAN and COBOL, did not

reflect newly developed software engineering principles and were not suitable for

embedded computer systems. An embedded computer is one that is a component of a

larger system, e.g., a guidance computer on a missile, or a target tracking computer in a

weapon system, etc. [Ref. 4]

The United States Department of Defense (DoD) recognized this software crisis.

There was no standardization in DoD projects as far as programming languages were

concerned. In response to these problems, DoD commissioned a worldwide language

design competition with the goal of developing a single high-order language suitable for

use in embedded computer systems as well as conforming to other well-defined require-

ments. The result of that competition was Ada. It is designed specifically for large,

software-intensive, real-time embedded computer systems. However, it is suitable for

other application areas as well. Ada both embodies and enforces modern software

engineering development principles, such as structured constructs, information hiding,

8



and abstraction. Ada is now a prime language in the computing industry, as well as being

the required language for embedded computer systems in DoD projects. (Ref. 4]

Both viewpoints on the definition of a fourth-generation language are applicable to

this thesis. In the first sense, that of an application generator, the Synthesizer Generator

is a CASE tool that takes as input an editor specification written in a fourth-generation

language and outputs compilable C code, which is then compiled into an executable

editor program. In the second sense, that of a class of programming languages, the

purpose of the editor produced by the Synthesizer Generator is to support the early stages

of software design for eventual translation in to a fourth-generation language, specifically

Ada.



H. BACKGROUND

A. GENERAL DESCRIPTION OF A SYNTAX DIRECTED EDITOR

A syntax directed editor is a software tool for creating or modifying programs in such

a way that correct syntax is always maintained. It will not allow syntactically incorrect

constructs to be entered. Generally, the editor is designed for one specific programming

language, although editors exist that allow different languages to be programmed into it.

Often, the editor is the prime component of a set of programming tools that make up an

interated programming environment.

Most syntax directed editors are screen-based, i.e., program text is entered at the

location indicated by the display cursor, and the screen display is automatically updated,

just as most text editors do. But text editors, as the name implies, only allow modifi-

cation of the text, whereas syntax directed editors allow modification of the syntactic

structure of the program, as well as the text itself. As the text is entered, it is checked for

syntactic correctness, and errors are immediately detected and appropriate messages

displayed to the user. This prevents the user from writing programs that are syntactically

incorrect. [Ref. 5,6]

In most syntax directed editors, text is entered by creating a template, or a skeleton,

of some syntactic construct, and filling in the detail later. These templates form a parse

tree and only allow syntactically correct constructs to be generated. The user selects a

node of the parse tree that contains a non-terminal to fll in the detail. This non-terminal

10



can be expanded into valid syntactic alternatives. Some editors will display a list a valid

choices for the current node. The user can also enter directly the desired text, and if the

entry is not syntactically correct, the editor will then display a list of alternatives to the

user. This process, known as programming by selection, is partic-ularly beneficial in a

learning enviranment because the time to learn the rules of the language (the syntax) is

reduced. Figure 2 is an example of the programming by selec-tion process for a

compound statement using an arbitrary language. [Ref. 5,6]

Pro-ram Statement Transformation Selected

begin <stmntlsr> end
<stmntlst> - <stmntlst> ; <srmnt>

begin <strmntlst>; <stmnt> end
<stmntlst> - <stmnt>

begin <stmnt>;<stmnt> end
<strnnt> -* <ass ig n_stmnt>

begin <assign strnt>; <stmnt> end

<assign stmnt> x .'= 5
begin x 5; <stmnt> end

<stmnt> -f <proc_call>
begin x . 5; <proccall> end

<proccall> - p(x)
begin x 5;p~'x) end

Figure 2
Programming by Selection

Since visual display units (VDUs) generally can only display 24 lines of text at a

time, it is impossible to display much of the parse tree graphically on the screen. How-

ever, an overall view of the program (or at least a larger portion of it) is possible by

unparsing the tree, i.e., displaying text down to a certain level of detail and omitting the

11



remaining detail. The omitted portions are commonly replaced by ellipses ("...") so the

overall view of the structure remains intact. The user may then select a particular portion

on which to zoom in and display greater detail. [Ref. 5]

Changes are made to the structure of the program using the central commands of the

editor. The editor might allow zhanges in terms of operations on the branches of the

parse tree, by matching subtrees and substitution, or by entering arbitrary text and repar-

sing the tree. For example, suppose the user wanted to rename a variable "red" to "blue".

Variables are a construct of the language, i.e., a subtree. Changing the symbol of this

subtree from "red" to "blue" does not affect other text strings in the parse tree that contain

the substring "red", i.e., a variable "fred" is not changed to the variable "fblue". This

kind of structural editing (as opposed to simple text editing) avoids unintended changes

to the program. If this were not the case, i.e., if such a substitution replaced every'

instance of the substring "red" throughout the program, the result would be potentially

disastrous. [Ref. 5]

Structural commands insert, copy, move and delete subtrees within the parse tree.

Subtrees can also be clipped, or contracted into a non-terminal symbol of the grammar.

These clipped pieces are saved, and can be reused at other locations using a special form

of the insert command. The benefit of this facility is the time saved by copying or

moving whole subtrees from one location in the parse tree to another rather than having

to re-construct the subtree at the new location. [Ref. 5]
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Most syntax directed editors incorporate a pretty-printing function. This can be

reflected on the display screen as well as on the hardcopy output. Pretty-printing might

be a selectable function, or it might be done automatically. [Ref. 5]

A syntax directed editor can also maintain some semantic constraints. For example,

every variable that is used must be declared. Such facilities are useful for preventing

some classes of errors.

The SPECDEF editor incorporates some of the facilities mentioned above. It is a

screen-oriented hybrid editor that modifies the structure of the edited object by template

insertion as well as direct text entry. The valid choices for template insertion are

displayed to the user at each node of the parse tree when that node is selected. Textual

changes to one construct do not affect the same text in other constructs. Subtrees can be

clipped and copied or moved to other locations in the parse tree. Pretty-printing is

automatic in the sense that indentation and line breaks are designed into the unparsing

schemes.

SPECDEF does not, however, have any provisions for semantic checking of variable

declarations or for elision of detail into ellipses. Future versions of SPECDEF will be

integrated with a type checker and a consistency checker that will help maintain semantic

constraints. Provisions for elision of detail may also be incorporated in future versions of

the SPECDEF editor.

B. SYNTAX DIRECTED EDITOR GENERATORS

An important area of research in computer science is that of language-based

programming environments. Probably the most significant programming tool in such an

13



environment is a syntax directed editor. Integrating a syntax directed editor with

execution and debugging facilities creates a powerful programming tool. Several such

systems have been developed, e.g., GANDALF [Ref. 7,8], and the Cornell Program

Synthesizer [Ref. 9]. The Synthesizer Generator [Ref. 10,11] is an outgrowth of the

Cornell Program Synthesizer.

Both GANDALF and the Synthesizer Generator have the capability to create editors

for languages other than programming languages, such as verification languages or

specification languages. The Synthesizer Generator was selected as the primary tool for

this thesis because of the availability of mutual support with a parallel research project in

protoryping languages currently under development at the Naval Postgraduate School.

MAsn, at th: ,age of research, there was not a need to generate a multiple user environ-

ment such as GANDALF generates. The discussion on GANDALF is offered for

purposes of comparison. Follow-on research to this thesis may wish to investigate the

use of GANDALF to create a multiple user environment.

1. The GANDALF System

The GANDALF System is a software tool that generates integrated environments

that are language-specific. Two different kinds of environments are possible using this

system--programming environments and software development environments. A

programming environment is a highly interactive knowledge-based environment for a

single programmer working on a small project. A software development environment,

which is the primary purpose of the GANDALF project, is one in which multiple

programmers work on large projects. [Ref. 81
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The heart of the GANDALF project is designed around the ALOE editor

generator system, which stands for A Language Oriented Editor. A language oriented

editor is also known as a syntax directed editor or a structure editor in the literature.

ALOE is actually the common kernel that is used by all syntax directed editors generated

with this system. A specific instantiation of a syntax directed editor is known as an

ALOE editor. ALOEGEN is an ALOE editor that is used to create the syntactic

descriptions of a language that can then be used in conjunction with ALOELIB, which is

library support to add semantic actions and additional commands, to create a syntax

directed editor for the specific language. [Ref. 7]

The user interface of all generated ALOE editors are tree-oriented full-screen

interfaces. There is a set of language-independent commands, such as subtree deletion

and cursor motion, as well as a set of language-specific operations that represent

structures of the language, such as Pascal while statements or Ada packages. [Ref. 7)

As a programmer creates or edits a program with an ALOE, the program is

displayed much the same way as a text editor would display it. But the representation is

based on the structure of the program rather than simply as a string of characters. This

structure is an abstract syntax tree. The programmer moves about the program by way of

this tree structure. The cursor will highlight an entire structural unit, such as a Pascal if-

then-else construct, or a specific non-terminal within the structural unit, rather than just a

single character. Operations are performed on the structure of the program, i.e., insertion

or deletion of structural units, or expansion of non-terminals. [Ref. 8]
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As stated earlier, the primary focus of the GANDALF project is the generation of

software development environments that would support multiple programmers working

on a large project. This type of environment also has an ALOE editor as its basis, but in

addition provides a system version control editor and a project management editor to

solve programming-in-the-large and programming-in-the-many problems respectively.

These problems are significantly harder to solve because of the interaction required

between various modules developed by different programmers on the team. Research is

continuing in this area. [Ref. 8]

2. The Synthesizer Generator

The Synthesizer Generator is a system that creates a language-specific editor from

a specification of the language's abstract syntax, context-sensitive relationships, display

format, concrete input syntax, and transformation rules for restructuring objects. The

specification language for the Synthesizer Generator, SSL (for Synthesizer Specification

Language). is based on the concept of an attribute grammar. An attribute grammar is an

extension of a context-free grammar. The extensions are the attributes which have been

attached to the nonterminal symbols. The value of these attributes is defined by attribute

equations. This mechanism can specify how widely separated parts of a derivation tree

can be constrained by the context of the rest of the tree. [Ref. 10]

Specifications written in SSL are different from specifications written for other

systems that are based on attribute grammars. This is because SSL has several

innovations, e.g., the capability to merge abstract-syntax definitions and user-defined
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attributes, a notation that allows specifications to be broken into separate modules, and

the manner in which the parser is incorporated into the system. [Ref. 10]

There are two basic components that comprise the Synthesizer Generator: (1) a

translator that converts SSL specifications into various tables as output, and (2) an editor

kernel with an attributed-tree data type and a driver for manipulating attributed trees

interactively. The kernel executes operations on the current tree according to keyboard

and/or mouse commands. A shell program named sgen invokes the translator and pro-

duces the syntax directed editor for the specified language from the tables that are output

from the translator. [Ref. 11

Objects being edited with an editor produced by the Synthesizer Generator are

represented as attributed derivation trees. Each modification to the object being edited

causes the attribute values throughout the tree to be updated. If a modification results in

the violation of any context-dependent constraints, the display is annc ated with error

messages to provide the user with immediate feedback. [Ref. 11]

The editor produced by the Synthesizer Generator displays constructs of the

language as templates, or predefined, formatted patterns. Non-terminals within

constructs can be thought of as placetolders where additional insertions can be made

through a transformation equation. When the user selects a subterm (i.e., a placeholder)

a menu of possible transformations is listed. A transformation is invoked either by

typing the name or making a menu selection with a mouse. Transformation definitions

are type-checked when the SSL specification is compiled into an editor, so it is

impossible for a transformation to introduce context-free syntax errors. [Ref. 11]
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In addition to the transformations, which are language specific, every editor

generated by the Synthesizer Generator contains language independent system comIands

such as cut-to-clipped and paste-from-clipped. The cut operation differs from ordinary

text editors, which would delete the selected text and leave the cursor at that position. In

the syntax directed editor, the cut operation replaces the selected subterm with a place-

holder, thus maintaining the correctness of the context-free syntax. The paste operation,

conversely, replaces the placeholder term with the previously cut subterm.[Ref. 11 ]

The Synthesizer Generator is written in C and runs under the Berkeley UNIX

svstem. Editors can be generated for specific windowing systems, such as VDEO, SUN,

and X-Windows. There are a number of selectable options when invoking sgen that

affect the method of generation and the capabilities of the generated editor. For a

complete list of these options, refer to Appendix B of [Ref. 11].
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mII. AN OVERVIEW OF THE SPEC SPECIFICATION LANGUAGE

A. THE PURPOSE OF SPEC

The functional specification stage of the software development cycle gives a black-

box specification of the software project, i.e., only the interface between modules is

described, not the inner workings. Spec is a formal language for writing such black-box

specifications, as well as for specifying the internal interfaces of the proposed system

during the architectural design phase. [Ref. 123

A precise, formal specification of a proposed software system is essential in order to

ensure that everyone on the development team understands and agrees with the interpre-

tation of the user's requirements. Programming languages, such as Ada, are formal, but

because they are designed for describing algorithms and data structures rather than the

actual behavior of a module, they are not suited for writing black-box specifications.

Spec is designed specifically for defining the behavior of software modules. The formal

notation of Spec provides the precision needed to prevent the ambiguity inherent in

English and other informal notations. [Ref. 12]

Spec uses the event model to define the behavior of a proposed system. The event

model describes computations in terms of modules, events and messages.

A module is a black box that interacts with other modules only by sending and
receiving messages. An event occurs when a message is received by a module at a
particular instant of time. A message is a data packet that is sent from one module
to another. (Berzins. 1987, p. 2)
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Modules can model either software components, or external systems such as peripheral

hardware or even the user. Messages are accepted by a module one at a time. The length

of a message is arbitrary. It is assumed that every message sent eventually arrives at its

destination. [ Ref. 1]

The sequence of messages that are received by a module determine what kind of

response will occur. Modules are classed as mutable or immutable depending on how

the module reacts to messages. If the response of the module can depend on one or more

messages received prior to the most recently received message, the module is mutable.

Mutable modules behave as if they had internal states or memory. If the module's

response to every possible message depends solely on the most recently received

message, the module is immutable. A module is immutable if and only if it is not

mutable. Immutable modules behave more like mathematical functions. [Ref. 12]

B. MODULE DESCRIPTIONS

Five types of modules can be specified in Spec: definitions, functions, state

machines, abstract data types, and instances of generic modules.

I. Definition Modules

Definition modules contain descriptions of concepts that are not unique to any

pa-ticular function, machine, or type declaration, but are instead available to be shared

among many modules through importation. Only concepts may be declared in definition

modules. Definition modules may also import other modules. [Ref. 1)

Concepts describe the logical assertions that define the behavior of modules.

They can define constant symbols, symbolic type names, predicates (relationships) and
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functions (attributes). These conceptual representations are introduced by the keyword

CONCEPT. Concepts can be explicitly exported to other modules through an EXPORT

clause, as well as imported from other modules through an IMPORT clause (provided it

has been explicitly exported from the module in which it is defined). [Ref. 1]

Definition modules form the primary subset of the requirements analysis phase of

the software development cycle. In requirements analysis, a model of the problem

domain is created to record facts about the problem and the environment of the proposed

system needed by the developers in later stages. These facts are represented as concepts

contained in definition modules. The SPECDEF tool developed in this thesis treats the

subset of the Spec language used in this process.

2. Function Modules

Function modules are one of the three primary module types in Spec (the others

being machine modules and type modules). A function module behaves like a

mathematical function in that it calculate the value on a data type. [Ref. 12]

A function usually will perform only one task or service, so they will only accept

anonymous (i.e., unnamed) messages. Messages in a function module define the

"operations" that the function may perform. They are introduced by the keyword

MESSAGE. [Ref. 1,12,13]

Each message, or operation, returns a value in the form of a REPLY message. A

variety of responses can be defined with WHEN clauses, which specify preconditions

similar to the Pascal case statement or the switch statement in C. If none of the WHEN

clauses apply, an OTHERWISE clause handles the remaining cases. If a message
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response is to report an abnormal condition, a REPLY EXCEPTION message is returned.

Postconditions that must be satisfied by the outgoing message are specified with a

WHERE clause. [Ref. 1,12,13]

To illustrate the above concepts, Figure 3 depicts a function f that accepts an

anonymous message consisting of an input variable of type type]. If the input variable

satisfies precondition casel, the returned value is the output variable of "~e2, with a

postcondition that must also be satisfied. If the input variable satisfies precondition

case2, an abnormal situation exists, so the returned value is the exception failurel. If

neither of the preconditions can be met, then the OTHERWISE clause takes effect and an

exception failure2 is returned.

FUNCTIONf

MESSAGE (input-var: type])
WHEN case] (input-var)

REPLY (output-var : type2)
WHERE postcondition (output-var, input-var)

WHEN case2 (input-var)
REPLY EXCEPTION failure1

OTHERWISE REPLY EXCEPTION failure2

END

Figure 3
Example of a Function Module

3. Machine Modules

Machines are mutable modules that have an internal state. The conceptual model

of that state describes the behavior of the module, rather than the messages received in

the past. The keyword STATE introduces the declaration of the components of the

conceptual model of the state, and any restrictions on the set of meaningful states are
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given in an LNVARIANT clause. Restrictions on the initial state are given in an

INITIALLY clause. Input stimuli to the machine which invoke actions are defined in

MESSAGE clauses. The actions can be any combination of a REPLY, a REPLY

EXCEPTION, one or more SEND statements, or a TRANSITION to a new state.

Transitions are given as equations that describe the change either forwards or backwards

in time, whichever is simpler (i.e., in terms of the state before the transition or in terms of

the state after the transition). Messages can be sent to modules other that the origin of the

incoming message. This is done using a SEND statement instead of a REPLY. There

can be any number of SEND statements, but only one REPLY statement. [Ref. 1,12,13]

The example in Figure 4 depicts a machine called buffer which has a state model

consisting of a single-valued state-var of type typel. The statements INVARIANT true

and INITIALLY true indicate there are no restrictions on the states of the machine. If the

stimulus read is sent to the machine, the reply is the current value of state-var. If the

stimulus update is sent with the parameter new-value of the type type1, the state of the

machine is changed by assigning the new-value to state-var. When the transition is

complete, the reply message done is sent to the initiator of the stimulus.
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MACHINE buffer
STATE (state-var: type])
INVARIANT true
INITIALLY true

MESSAGE read
REPLY (result: type])
WHERE result = state-var

MESSAGE update (new-value : type])
TRANSITION state-var = new-value
REPLY done

END

Figure 4
Example of a Machine Module

4. Type Modules

Abstract data types are defined in type modules. An abstract data type consists of

a set of values and a set of primitive operations that operate on those values. In the type

module each operation is represented by a named message. The data type is described in

terms of a conceptual model rather than the actual data structure used in the implemen-

tation. The implementation of the data type can change to improve performance, but the

conceptual model will still be valid. The keyword MODEL introduces the tuple that

represents each instance of the data type. The components of the tuple can have

restrictions specified in an INVARIANT clause. The effects of the operations can be

described by CONCEPT clauses. Type modules can be either mutable or immutable.

[Ref. 12]
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5. Instance Modules

An instance module is used to make an instance or partial instantiation of a

generic module. This is useful for renaming concepts in other modules before importing

or inheriting them. For example, if module m contains a concept c that you wish to

import, but you have already defined a local concept using the same name and argument

types but with a different meaning, one of the two concepts will have to be renamed. If

the name you have chosen for your local concept is a good one, then it is better to rename

the imported concept. To do this, you must first create a new instance ot module m, say

new-m. in which you declare a renaming of concept c to new-c. The renamed concept

can now be imported from the new instance of module m (i.e., module new-m). This

example is illustrated in Figure 5.

INSTANCE new-rn = m
RENAME c AS new-c

END

-- The renamed concept can now be imported as follows:
IMPORT new-c FROM new-m

Figure 5
Using an Instance Module to rename a concept

C. OTHER FEATURES

1. Concepts used as Subprograms

Concepts, which were briefly described above, are of great benefit in simplifying

descriptions of complex soft-are systems. Long expressions in predicate logic, for
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example, can be decomposed into several concepts that are easily understood individ-

ually, making the overall expression more understandable. Concepts in Spec are

analogous to subprograms in a programming language.

2. Inheritance in Spec

Spec has an inheritance mechanism that allows constraints that are common to the

interface of several modules to be specified. This is particularly useful in specifying

large software systems because it helps achieve a consistency in the interface of several

modules. [Ref. 12)

Inheritance applies to entire modules. An inherit clause is introduced with the

keyword INHERIT followed by the name of the module being inherited. The effect is

the same as if all the concepts, messages, models or states of the inherited module were

copied verbatim into the current module. Any specific concept, message, model or state

may be excluded from being inherited into the current module through a HIDE clause.

To avoid name conflicts, messages or concepts can be "renamed" to a "new" name with a

RENAME clause. [Ref. 13]

There are restrictions on which type of modules can be inherited by which other

types of modules. Definition modules may only inherit other definition modules.

Function modules may inherit other functions and definition modules. Machine modules

may inherit other machines, function modules and definition modules. Type modules

may inherit other types, function modules and definition modules. Any of these four type

of modules may inherit an instance module provided the base module that the instance

instantiates is of a type appropriate to the module that is doing the inheriting. [Ref. 13]
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A more detailed discussion of inheritance in Spec can be found in [Ref. 13].

Closely related to inheritance is the mechanism for importing and exporting

concepts from one module to another. Only CONCEPTS may be imported and exported.

An IMPORT clause is used to allow concepts defined in other modules to be made a

"part of' the current module. An EXPORT clause allows concepts defined in the current

module to be available for explicit importation into other modules. A concept cannot be

imported urless it has been explicitly exported by the module in which it is defined. This

importation and exportation mechanism, as well as the inheritance mechanism, is useful

for logical grouping of related concepts into a single module in support of a modular

construction of large software systems. [Ref. 1,12,13]

The SPECDEF editor is able to declare INHERIT, IMPORT, and EXPORT

clauses for definition modules. However, there is no capability for checking that the

named module in an INHERIT clause exists, or whether a concept named in an IMPORT

clause has been EXPORTed by the named module. It is therefore up to the user to ensure

that such is the case.

D. COMPLETE DESCRIPTION OF SPEC

The foregoing discussion on Spec is necessarily brief For a more thorough

description see [Ref. 12] and Chapter 3 of [Ref. 1]. The grammar of the Spec language is

included at the end of this thesis as Appendix A.
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IV. DESIGN OF THE SYNTAX DIRECTED EDITOR FOR SPEC

A. GOALS

1. Short Term

The initial short term goals for this research project were as follows: (1) gain an

understanding of how to write a specification for a syntax directed editor in terms of the

Synthesizer Generator specification language, SSL, and (2) implement a working model

of the syntax directed editor for a subset of Spec. In order to achieve these goals as

quickly as possible, it was decided to limit the specification to syntax editing only and

forego any semantic checking.

2. Long Term

The long term goals (beyond the scope of this thesis) are to (1) implement the

editor for the complete Spec grammar, and (2) integrate the editor into a complete

programming environment for Spec. This environment will include the editor, a type

checker [Ref. 15], a pretty printer [Ref. 16], a consistency checker, an inheritance

expander, a test oracle, a diagram generator, and translator to Ada. With the exception of

the pretty printer and an initial version of both the editor and the type checker, the tools

mentioned above have yet to be developed.

B. CONCEPTS FOR USING THE SYNTHESIZER GENERATOR

To effectively utilize the Synthesizer Generator, several terms and concepts that are

perhaps unfamiliar to most readers must be understood. An SSL editor specification is

28



built around three different but related grammars: the abstract syntax grammar, the

concrete syntax grammar, and the unparsing scheme. The abstract syntax defines the

basic set of context-free grammar rules that define the language, excluding any keywords

in context (hence, context-free). The concrete syntax defines the input grammar for text

entry, and the productions of this grammar do take keywords into account. The

unparsing scheme defines the formatting rules for the display representation of the

language, including keywords, punctuation, and indentation. [Ref. 10,11]

1. Attribute Grammar

The Synthesizer Generator is based on the concept of an attribute grammar. As

mentioned previously, an attribute grammar is a context-free grammar that is extended by

attaching attributes to the nonterminal symbols of the grammar and by defining attribute

equations that determine the value of those attributes. Each attribute is a piece of

information that describes some semantic property of the nonterminal. For example, a

variable could have attributes such as type, value, length, etc. Each production in the

grammar can have a set of attribute equations.

There are two disjoint sets of attributes of a nonterminal: synthesized attributes

and inherited attributes. Synthesized attributes are associated with the left-hand-side

nonterminal of a production, while inherited attributes are associated with nonterminals

of the right-hand-side of a production. That is, the left-hand-side synthesizes its attribute

values from the right-hand-side attributes, and the right-hand-side inherits its attribute

values from the left-hand-side attributes. [Ref. 10: p. 391
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The current version of the SPECDEF editor defines only a synthesized attribute t

for some nonterminal, whose value is the text string entered to represent the nonterminal.

Future versions of SPECDEF may incorporate attributes that pertain to error messages or

other environmental factors related to type checking.

2. Abstract Syntax, Phyla and Terms

The underlying abstract syntax of the language is simply the set of grammar rules

that define the language, excluding any keywords. In SSL, the abstract syntax consists of

a set of productions of the form

Xo .' o) (XI X 2 ... Xk),"

where op is an operator name and each X, is a nonterminal of the grammar. Each of

these nonterminals is the name of a phylum, and each phylum is the set of derivation trees

that can be derived from the nonterminal. A phylum is a special kind of abstract data

type. The derivation trees are known as terms. A term is an expression that applies a k-

ary operator to k elements of an appropriate phyla. The SSL grammar rule acts the same

as the context-tree production:

Xo - X X ... Xk

The operator serves to distinguish between rules that have right-hand-sides that are

structurally identical but which may have different keywords in a concrete syntax. For

example, the operator names Equal, Add, and Subtract in Figure 6 distinguish between

three kinds of expression pairs. [Ref. 10: pp. 45-47]
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root start,
start Spec(spec),
optional list spec;
spec: ModuleNil()

I Module Pair(module spec)

module Def Module Decl(interf ace concepts):
interface Interf ace Decl(formal name inherits Imports export);

where WhereEmpty()
WhereExp(expression list)

optional list concepts;
concepts ConceptNil()

I ConceptPair(concept concepts)

concept ConceptType(formalname type spec where)
I ConceptValue(formal-name formal -arguments where

formal_arguments where)

formal-name FormName(identifier formalparameters);

expressionjlist SingleExp(expression)
I MultiExp(expression_list expression)

expression UndefExp()
Equal(expression expression)
Add(expression expression)

I Subtract(expression expression)

identifier ldentiffier(IDENTIFIER);

IDENTIFIER IdentLex< [a-zA.ZJja-zA-Z-9J>:

Figure 6
Partial Listing of Abstract Syntax for qne-c

The abstract syntax of a language must have one phylum designated as the root

phylum. The objects that can be edited within the generated editor are terms of this root

phylum. [Ref. 10: p. 48]
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3. Completing Term

Each phylum has a default value called the completing term. The editor uses

these default values at each unexpanded occurrence of a phylum in the derivation tree of

the object being edited. [Ref. 10: p. 48]

The completing term of a phylum is constructed by the first operator declared for

that phylum, such as the operator UndefExp of phylum expression and the operator

WhereEmpty of phylum where in Figure 6. This completing operator is applied to the

completing terms of its argument phyla. (List phyla or optional phyla are exceptions to

this rule, as described in Sections JV.B.5 and IV.B.6 below.) [Ref. 10: pp.48] For

example, the completing term for phylum module defined in Figure 6 is the term

DefModuleDecl(Interface Decl(Fo rmName(...),InheritNil,lmportNil,ExportNil),ConceptNil)

i.e., the completing operator for module applied to the completing terms of phyla

interface and concepts. Notice that the completing term for phylum interface had to be

constructed in the same manner before the completing operator of phylum module could

be applied to it.

4. Placeholder Term

Each phylum has an associated placeholder term which is also a default represen-

tation for its respective phylum. The placeholder is used to represent an "unexpanded"

node in the derivation tree of the object being edited, i.e., it represents a "to be

determined" value for the respective phylum. [Ref. 10: p. 691

Phyla declarations may have property declarations that determines the behavior

of the placeholder term. The property declarations can declare a phyla as an optional
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phylum, a list phylum, or an optional list phylum. Any phylum that does not have one of

these declared properties is referred to as an ordinary phylum. For ordinary phyla and

non-optional list phyla, the placeholder term and the completing term for the respective

phylum are identical. However, for phyla declared as optional or an optional list, the

concepts are different as explained in Sections IV.B.5 and IV.B.6. [Ref. 10: p. 77]

The placeholder term often displays the default representation of its phylum as a

string of characters consisting of the phylum name enclosed in angle brackets, e.g.,

<concept> or <identifier>. Such a display representation is not mandatory, however.

For example, in the SPECDEF editor, the placeholder term (and completing term) for

each of the phyla field, type_spec, and expression is the symbol ?, which is the Spec

notation for an undetermined value that must be defined later.

In any case, the placeholder term is used at an unexpanded node in the derivation

tree. Even though the derivation tree contains placeholders, it is still a complete

derivation tree from the system's point of view. [Ref. 10: p. 49]

5. Lists and Optional Lists

Certain phyla are designated as lists. A list represents a sequence of items, such

as an argument lit in a subprogram. Phyla declared as lists must have exactly two

operators, one being a nullary operator and the other a binary operator that is right

recursive. In the example shown in Figure 7, phylum stmtList is declared as a list

phylum, with the nullary operator StmtListNil and the binary, right recursive operator

StmtListPair. [Ref. 10: p. 491
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list stmtList;
stmtList : StmtListNilO)

S StmtListPair(stmnt stmtList)

Figure 7
Declaring a list phylum

List phyla can be declared as optional lists. Declaring a list as optional causes it

to behave as a list of zero or more elements, whereas a non-optional list behaves as a list

with at least one element. [Ref. 10: p. 82]

The completing term for list phyla and optional list phyla is defined differently

than for ordinary phyla. for a non-optional list, the completing term is constructed by

applying the binary operator to the completing term of the left-argument phylum and to

the list's nullary operator. This has the effect of concatenating the completing term of the

left-argument phylum with the nullary operator of the list phylum, resulting in a singleton

list. For optional list phyla, the completing term is simply the constant term formed from

the nullary operator of the phylum. [Ref. 10: pp. 77-82]

The placeholder term for list phyla (whether optional or non-optional) is formed

the same as the completing term had the phylum been declared as a non-optional list. As

an example, the completing term for phylum spec in Figure 6 is the term

ModulePair(DefModuleDecl(lnterfaceDecl(...), ConceptNil), ModuleNil)

i.e., ModulePair applied to the completing term of phylum module and to the term

ModuleNil. [Ref. 10: pp. 79-82]
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Editors generated by the Synthesizer Generator provide special built-in actions for

manipulating list phyla. The system command forward-with-optionals <AM or

RETURN> or forward-preorder <AN> is used to move the selection point forward in a

derivation tree to the next node in a preorder traversal (see Appendix C for information

on executing system commands). When moving the selection through a list, the editor

automatically inserts a placeholder term before and after each list element. If the place-

holder term is not edited (i.e., transformed through template insertion or text entry, both

described later), when the selection is moved to an element that is not contained within

the placeholder term, the placeholder is deleted from the derivation tree. Because this

insertion and deletion process is automatic, these placeholder terms are referred to as

transient placeholders. [Ref. 10: pp. 69-72]

The qualifier optional introduces a distinction between a phylum's completing

term and its placeholder term. As stated previously, for ordinary phyla and non-optional

list phyla, the completing term and placeholder term of the respective phylum are

identical. When the current selection is an optional list phylum, the completing term is

automatically replaced by the phylurn's placeholder term. If the placeholder term is not

edited through template transformation or text entry (both described later), and the

selection is moved outside the scope of the placeholder, the placeholder is automatically

replaced by the completing term. [Ref. 10: pp. 76-82]
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6. Optional (Non-List) Phyla

Elements of the language that are optional can be declared as optional phyla.

Optional list were discussed in the previous section. Non-list phyla can also be declared

as optional. [Ref. 10: pp. 77-82]

An optional (non-list) phylum can have any number of operators, but one must be

a nullary operator. The completing term of the optional phylum is formed from the first

listed nullary operator of the phylum in the editor specification. The placeholder term is

formed by "completing" the first operator of the phylum that is not the completing-term

operator. Since the completing term is formed by a nullary operator, it will contribute

nothing to the display representation. Therefore, the order of the operator declarations

should be arranged such that the placeholder term displays the appropriate prompt, e.g.,

the phylum name enclosed in angle brackets or some other appropriate display string.

[Ref. 10: pp. 79-80]

7. Lexical Phyla

A lexical phylum is used to declare special strings of characters called lexemes

that represent the smallest lexical units of the language, such as keywords, punctuation

and other special characters, or literal constants such as identifiers, integers, etc. The

three grammars that are used in an editor specification are interrelated, and lexemes play

an important role in these relationships. In the relationship between the abstract and

concrete grammars, lexemes are used to differentiate between similar constructs during

semantic analysis. It should be noted that in the concrete grammar, certain lexemes can

have more than one version or style. In the unparsing scheme, lexemes are used to
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display keywords, punctuation, other special characters such as operator symbols, or

constants. [Ref. 11: p. 15]

Lexemes are defined by one or more regular expressions that are recognized by

the lexical analyzer generator Lex [Ref. 17]. The form of a lexeme declaration is

phylum-name : lexeme-name < regular-expression >;

which declares that all strings generated by the given regular-expression are in the

named phylum, There must be at least one blank separating the regular expression from

the closing angle bracket. The regular expression itself must contain no embedded blank

characters except those explicitly escaped by a preceding backslash. The lexeme-name is

used in the definition of the concrete input grammar to represent an instance of the actual

lexeme, such as a keyword or special symbol. [Ref. 11: pp. 15-17]

The regular expressions in a lexeme declaration are exactly the regular

expressions accepted by Lex, with only a few exceptions as follows [Ref. 11: p. 16]:

" The blank character within square brackets must be escaped.

" Definitions, as described in Section 6 of the Lex manual [Ref. 17], are not
supported.

In Figure 8. "C" stands for an) printable character, "N" stands for any decimal

integer, and "E" stands for any regular expression. Each listing is a regular expression.

The symbols " \ [ I - A . $ ? * + I ( ) / { ) % < > each have special meaning in regular

expressions (see [Ref. 17] for full details). If they are used as literal text characters, they

must appear within quotation marks or be escaped with a preceding backslash. Inside

square brackets, however, only the characters \ - A and blank have special meaning. All

other characters denote themselves. [Ref. 11: pp. 16-171
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Expression Meaning

C the character C
"C]C2C3' the suing CIC2C3
'C the character C
[CIC2 C31 the character Cj, C2, or C
[C-C 3] any of the characters from C, through C3

["CC 2C3] any character but Cj. C2, and C3
any character but newline

^E an E at the beginning of a line
E$ an E at the end of a line
E? an optional E
E* 0 or more instances ofE
E+ I or more instances of E
EIE2  an E, followed by an E2
E, IE2  an Ej or an E2

(E) an E
E1IE2  an E, but only if followed by an E2
E{' NN 2} N1 through N2 occurrences of E

Figure 8
Construction of Regular Expressions

Lexeme declarations are not totally independent, since their order can influence

the recognition process during lexical analysis. When more than one regular expression

can be matched, the longest match is made. If several rules match the same number of

characters, the declaration defined earlier in the specification is used. Because of this, all

keywords should be defined prior to a definition for a class of identifiers. [Ref. 11: pp.

16-17]

Whitespace characters (spaces, tabs, newlines) are ignored during parsing, but are

important for the concrete input syntax. The lexeme declaration

WHITESPACE: < D \n\t] >;

defines such characters for the system. [Ref. 11: p. 17)
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C. PRACTICAL APPROACH TO DESIGNING AN EDITOR

There are many aspects of an editor specification. A novice editor-designer will

probably be confused on where to begin. The following discussion is the recommended

approach by the authors of the Synthesizer Generator together with insights gained

through practical hands-on experience.

Start by choosing a simple subset of the full language. This allows the editor-

designer to become familiar with the formats of the various sections of the editor

specification without getting lost in the details required for the full language. Once the

editor is implemented for this subset, and works as expected, the subset can be expanded.

The remaining steps are listed in Table 1 below and explained in more detail in the rest of

this section. [Ref. 10: pp. 162-1691

Table 1: STEPS TO DESIGNING AN EDITOR SPECIFICATION

1. Define the abstract syntax.
2. Define the display representation.
3. Define template transformations.
4. Generate and debug editor.
5. Define concrete input syntax.
6. Refine the display representation.

It is recommended to design the editor specification in a modular fashion. This

enhances the understandability of the editor specification. It also supports the reusability

of the different "modules" in related editors, such as upward-compatible editors for

language extensions or different editors for the same language that provide different
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display formats. Reps and Teitelbaum recommend [Ref. 10: pp. 172-178] the following

six modules for organizing an editor specification:

* Abstract-syntax declarations and template transformations on these constructs.

* Lexical declarations.

Contc-te-iiiput .yntax declarations together with precedence and associativity
rules.

* Attribute-domain declarations and operations on the attribute domain. (Note: the
current version of SPECDEF does not have any attribute-domain declarations,
such as environment attributes. However, future versions may need a file with
these kinds of attributes.)

* Attribute declarations and equations.

* Unparsing declarations.

It should be noted that the above order of modules does not correspond to the order of

steps for designing an editor specification. This is the recommended order that the

respective SSL files should be input to the Synthesizer Generator to create an editor.

1. Define the Abstract Syntax

The first step is to define the abstract syntax of the language subset. A Backus-

Naur Form or context-free grammar is a convenient starting point. Minimize

unnecessary syntactic distinctions. For example, in the production

exp: Const(INT);

the numerals 007 and 7 will both be translated to the INT value 7, and displayed as the

numeral 7. If the distinction between 007 and 7 must to be preserved, however, the pre-

defined phylum INT should be replaced by the phylum, say, INTEGER with the lexeme
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declaration

INTEGER: < [0-9]+ >;

which defines numerals as strings. Leading zeros are thus preserved. [Ref. 10: p. 163)

Omit all terminal symbols that are just "syntactic sugar", such 9-; punctuation

marks and keywords. Operator names will suffice to distinguish between alternative

terms of the left-hand-side phylum. Only those terminals that carry semantic information

should be retained in the abstract syntax, such as identifiers, numerals, and other literal

constants. [Ref. 10: pp. 163]

Attribution schemes can influence the design of a language's abstract syntax.

Phrases that are lexically identical are often used for distinct purposes. The static-

semantic analysis then depends on the context in which the phrase is used. If all usages

of the phrase have a common syntax, then the context must be passed down as an

inherited attribute to select the appropriate analysis. However, if each use of the phrase

occurs in a different phylum, the context is implicit in the phylum's operators, and the

correct attribute equations for the static-semantic analysis are automatically selected. It

is an unavoidable fact that the abstract syntax may have to be changed when attribution

rules are addressed. [Ref. 10: p. 164]

2. Define a Display Representation

The second step in specifying an editor is to define an initial set of unparsing

declarations to allow the editor to display the terms of the abstract syntax. Do not be

concerned with fancy pretty-printing at this point. Define only enough "syntactic sugar"

to debug the abstract syntax. Specifically, do not consider alternative unparsing schemes
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(an alternate display representation of the given production, often used for an

"abbreviated" display), optional line breaks, context-dependent display formats, and

special fonts now. However, line breaks and simple indentation rules are advisable at

this stage. [Ref. 10: p. 164]

The unparsing declarations define which productions of an object are editable as

text as well as the display format of a term. There is an unparsing production corre-

sponding to each production of the abstract syntax. Each unparsing production consists

of a sequence of strings, names of attribute occurrences, names of right-hand-side

phylum occurrences, and selection symbols. The unparsing rules take one of two forms:

phylum : operator [left-side : right-side];
phylum : operator [left-side ::= right-side];

The unparsing scheme between the square brackets represents a concrete display format

for the corresponding abstract syntax production. The symbol ::= indicates the

production's text is editable, whereas the symbol : indicates the production is (usually)

treated as an indivisible structural unit. Not all operators of a given production have to

use the same symbol. The left-side is a selection symbol (explained below) representing

the left-hand-side of the corresponding abstract syntax production. The right-side is a

sequence of strings, attribute-names and selection symbols representing the right-hand-

side of the corresponding abstract syntax production, and defines the display format for

that production. [Ref. 10: p. 59]

Indentation and line breaks are indicated by the following control characters:

*/t - move the left margin one indentation unit to the right
%b - move the left margin one indentation unit to the left
%n - break the line and move to the left margin of the next line
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These control characters can be included in strings (i.e., inside double quotes) of an

unparsing rule. [Ref. 10: pp. 59-60]

Each nonterminal (i.e., phylum name) in an abstract syntax production is replaced

by the selection symbol @ or ^ in the corresponding unparsing rule. These selection

syrbols define the selectability property for the corresponding node in the tree. The

selection symbol @ specifie: that the phylum occurrence is a resting place; the selection

symbol ^ denotes a non-resting place. A resting place is a point where the corresponding

phylum occurrence can be expanded through template insertion or text ent-'. Each node

in the syntax-tree is an instance of two phylum occurrences in the grammar: as a left-

hand-side occurrence in one production, and as part of a right-hand-side occurrence in

another. If either of its two corresponding occurrences is specified with an @, that node

is a resting place. [Ref. 10: p. 61]

Care must be taken when defining unparsing schemes for list phyla. The two

occurrences of the list phylum (i.e., the left-hand-side and the second argument on the

right-hand-side) should be defined with @ and the element-phylum (the first argument

on the right-hand-side) should be defined with A. This prevents an extra resting place at

the element-phylum position. Conditional unparsing of list separators are declared inside

square brackets. These list separators are suppressed from the display of production

instances occurring at the end of a list. For example, in Figure 9, the ["%n%n"j in the

unparsing declaration for ModulePair cause each element of the list to be separated by a

two line-feeds. [Ref. 10: p. 61]
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The unparsing declarations should initially contain the maximal number of resting

places to allow full exploration and debugging of the abstract syntax. Plan on elimi-

nating undesirable resting places later by changing some of the phyla occurrences from

@ to A. [Ref. 10: p. 164]

Priniidvc (lexical) ph.yla occurrences are an exception to this rule--they should

not be resting places. This has the effect of forcing the resting place one node higher in

the tree. To see why this is useful, imagine the following situation based on the abstract

syntax and unparsing rules for a desk calculator depicted in Figure 10. Suppose the

selection is positioned at an occurrence of phylum INT in one of the desk calculator's

expressions. The pre-defined primitive phylum INT has a placeholder term of 0, which

would replace the selection if the command delete-selection <AK> were executed and

INT wa a resting place. But if INT is not a resting place, the selection is forced one

level higher to Const(INT). Now if the command delete-selection is executed, the

placeholder term for exp, namely Null, replaces the selection. The dicplay representation

for Nu is the string <exp>. [Ref. 10: pp. 163-165]

Since occurrences of primitive phyla are not resting places, in operators of arity

two or more, the primitive phyla occurrences will not be individually selectable.

Therefore, an extra syntactic level is necessary to allow the individual selection of

components. Failure to add this extra level is a common mistake made when designing

an editor specification. [Ref. 10: p. 165]
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start Spec @
spec ModuleNii [@ :=

I Module Pair [& A ["0/n 0/nj @]

module Def Module DecI [@: *DEFINITION "@ @ /n
"END"]

interface InterfaceDecl @: @ "1/ot/n* @ '0/on" ca -/onl" @B -A/b%fl

where WhereEmpty W
I WhereExp "WHERE"@]

concepts ConceptNii'[
I ConceptPair 1@ @/n ]

concept ConceptType [@:: "/oton"CONCEPT "@ @ "tn

@ "%6o 0/6b%n"]
I ConceptValue [@ %/t%n"CONCEPT "@ @ "O/0t~n"

@ "0/6on"
*VAL'UE @ *O/on" Ca- "%/b0/b%fl"]

formal-name FormName [@ @ "@

expression-list: SingleExp [@ @1
I MuftiExp [@ =@"@

expression : UndefExp [@ *?
I Equal W@ :- @ "-@1
I Acid [@ @ "+ "@]

Subtract [@ =@ "-

identifier Identifier [@ :-A]

Figure 9
Partial Listing of Spec Unparsing Declarations
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root caic;
list calc;
calc CalcNil()

CalcPair(exp caic)

exp Null()
I Sum, Diff, Prod, Quot(exp exp)
I Const(INT)

calc CalcPair @::- @ "%nVALUE -??"['%nOn-1@;

exp Null [@ ::- "<expt'
Sum [ * + @

I if - "
I Prod W @ " @ 1I

Ouot W @ @
I Const [@::= A]

Figure 10
Desk Calculator abstract syntax and unparsing rules

3. Define Template Transformations

The third step in designing an editor specification is to provide a set of transfor-

mation declarations, or template transformations to restructure an object when the current

selection is a placeholder. The purpose of a template transformation is to replace the

placeholder term with the template of one of the other productions of the respective

phylum. The form of a transformation declaration is

transform X0 on trarformation-name <Xo> :operator (<XI>,.... ,<X,>);

which corresponds to the abstract syntax production

Xo : operator (XI.. .X.)

Each <Xi> denotes the placeholder term of the phylum Xi. [Ref. 10: p. 1661
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As with other kinds of SSL declarations, the phylum name X0can be factored to

the left when there are multiple transformations on the same phylum [Ref. 11: p. 86]:

transform X0
on transformation- name, <X0> operator, (<X,>,.. .,<YX>),
on transformation-narne2 '<XO> operator2 (<Y,>,...,.4'N ),

on transformation- namek <X0> :operatork (<Z ,...,<Zzn>)

The transformation-name is enclosed in double quotes and constitutes command

that can be invoked to replace the placeholder term with the invoked template (see

Appendix C for information on invoking template transformations). Figure 11 is a partial

limtng of the template transf _-wrtions for Spec.

List phyla and optional phyla do not normally require template transformations.

Commands that move the selection (e.g., forward-with-optionals [AM or RETURN] and

forward-sibling-with-optionals [E SCAM]) provide adequate transformations for these

phyla. [Ref. 10: p. 1661

transform concept
on -type- <concept>: ConceptType(<formal-name>,<typespec>,<where>),
on "value" <concept>: ConceptValue(<formal -name>, <formalarg ume nts>,

<where>, <f ormal_arguments>,<where>)

transform expression-list
on "single" <expression-list>: SingleExp(<expression>),
on mrultiple" <expression-list>: MuftiExp(<expressionjlist>, <expression>)

transform expression
on " <expression>: Equal(< expression>,<expression>),
on +<expression>: Add(<e xpression>, <expression>),
on -"<expression>: Subt ract(<expression>,<expression>)

Figure I11
Partial Listing of Spec Template Transformations
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4. Generate arid Debug Editor

At this stage the partial editor specification defines enough of the editor's

structure-editing facilities to allow the Synthesizer Generator to create an editor and for

you to test the editor's characteristics. Invoke sgen on the specification files. By

default, the created editor will be placed in the file syn.out. This c an be overridden with

the -o option which allows the user to declare what filename the editor will be called.

[Ref. 10: p. 167]

Recommended options to include at this point are the -w window-system-name

window option, which specifies that the editor will be created for the specific window-

system-name, and the -v option, which invokes Yacc [Ref. 18] with the -v flag so the

diagnostic file y.output will be produced. This file is useful for debugging the

specification file. [Ref. 10: p. 288]

The y.output file p;-oduced by Yacc is a complete listing of the state machine

model that represents the created editor. If there are any parsing conflicts in the editor

specification, these can be located in the y.output file by loading it into the vi editor and

doing a search for the word conflict. Specifically, the types of conflicts that can occur

are shift'reduce and reduce'reduce conflicts, both of which are described in detail belc. x.

5. Define Concrete Input Syntax

Next, define the concrete syntax for textual input. The concrete syntax consists of

lexical declarations, parsing declarations, and correspondence rules for connecting the

concrete syntax and the abstract syntax. Initially, provide only those rules needed to
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permit entering lexemes and simple expressions. The rules can be elaborated later to

permit text entry for additional language constructs. [Ref. 10: p. 167]

The term text editing refers to the process of modifying the textual representation

of an object through operations on the character sequence [Ref. 10: p. 108]. Structure

editing is the process of modifying the underlying abstract syntax tree structure of an

object [Ref. 10: p. 95].

Text editing is more appropriate than structure editing for entering and modifying

expressions. It is also needed for entering identifiers. While a subterm is being edited,

the usual rigors of the syntax directed discipline are temporarily suspended, since the

subterm being edited can be any string whatsoever. When the editing is complete, the

string is parsed and translated to the corresponding term of the abstract syntax. [Ref. 10:

p. 62]

a. Parsing Declarations

The parsing declarations that define the concrete input syntax are distin-

guished from the other phylum and operator declarations of an SSL specification by

using the symbol ::= instead of : to separate the left-hand-side phylum name from the

right-hand-side symbols. Additionally, parsing declarations may have tokens (single

characters enclosed in quotes) interspersed among the phylum symbols on the right-hand-

side.

Each parsing declaration has the form:

phylum-name operator-name (tokens phyluml tokens phylum2 ... phylumk tokens);
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Some of the phylu is may be lexical phyla that define keywords or other multi-character

tokens. Knowing which string occurred in the input is usually relevant. Therefore, the

corresponding string appears as the i-th argument of the operator in the parse tree.

Examples of parsing declarations are shown in Figure 12. [Ref. 11: pp. 76-77]

Attribute equations for constructing terms from text input are combined with

the parsing declarations using the following syntax:

phylum-name ::= operator-name (parsing-scheme) (equations];

Synthesized attributes of the left-hand-side phylum and inherited attributes of the right-

hand-side phylums are termed the production's output attributes. An attribute equation

defines the value of an output attribute in terms of other attributes accessible within the

production. The attribute equation(s) are grouped inside curly braces. An output

attribute b of phylum X is denoted by X.b. If there is more than one occurrence of

phylum name X in an attribute equation, the various occurrences of b are denoted (from

left to right) by X$1 .b, X$2.b, etc. An attribute b of a left-hand-side phylum of a

production can be denoted by $$.b. [Ref. 11: pp. 27-28]

Examples of attribute equations are shown in Figure 13. In the attribute

equations for SPECDEF, the attribute r is for text. As an example of how the attribute

equations work, let's examine the equation for phylum FormaIName. The text attribute

for FormalName is given the value formed by applying the abstract syntax operator

FormName to the value of the text attributes of the concrete input phyla Ident and

FormalParm.
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Module ::- (DEFINITION Interface Concepts END);
Interface ::= (FormalName Inherits Imports Export);

Concepts (Concept)
I (Concept Concepts)

FormalName ::= (Ident FormalParm);
FormalParm ::= 0

I ({' FieldList ')' Where)

Ident ::- (IDENTIFIER);

Figure 12
Concrete Syntax Parsing Declarations

The format of attribute equations for list phyla is different. Examine the

attribute equations for phylum Concepts in Figure 13. For the first production, the text

attribute of Concepts is given the value formed by concatenating the value of the text

attribute of phylum Concept with the nullary term ConceptNil. For the second

production, the new value of the text attribute of phylum Concepts, designated on the

left-hand-side as Concepts$1 .t, is given the value formed by concatenating the value of

the text attribute of the phylum Concept with the previous value of the text attribute of

phylum Concepts, designated on the right-hand-side as Concepts$2.t. Recall that

multiple occurrences of a phylum name X within an attribute equation are differentiated

left to right as X$1, X$2, etc.
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Module : (DEFINITION Intertace Conoepts END)
(Module.t = DfModuMeDed(Intwiarce.tConcepts.t);

Interface : (FormalName Inherits Imports Export)
(Interac. - InterfacsODed(FormaName.tInherit.L

Importb.t,Exportt);)

Concepts -= (Concept) (Conoeps.t (ConpLt:: ConooptNil);
I (CMcp C*epts)

(ConoeptoSi .t (Conop.t:: C4onpts$2.t);}

FormalName = (kient FormalPam)
(FormalNam.t =- FormNai9(IdnLttForlPsrm.t)j

FormaParm $= $ (S$.t - FormalPrmEmptyo)
I ( FldUst 1' Where)

[FormalParm.t = FomlParmLitsgFedListt,heme.t);

Ident ::= (IDENTIFIER) (Ident.t = Idenbfier(IDENTIFIER);)

Figure 13
Parsing Declarations with Attribute Equations

The operator names of parse tree terms are optional, and usually are not

needed since the parser constructs the parse tree. A unique operator name is

automatically generated by the parser. [Ref. 11: p. 78]

b. Correspondence Between Concrete Syntax and Abstract Syntax

To translate from text to term, rules are needed that define the association

between the abstract syntax and the concrete .jput syntax, along with attribute equations

that synthesize the term as an attribute of the parse tree. These rules are associated with

the productions of the concrete syntax, which is thus extended to become an attributed

grammar which generates terms of the abstract syntax. [Ref. 10: p. 62]

Attributes must be defined with an attribute declaration which has the form

concrete-syntax-phylum ( synthesized abstract-syntax-phylum anribute-name;};
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Examples of attribute declarations are shown in Figure 14. Note that the reserved word

synthesized can be abbreviated as syn. [Ref. 11: pp. 24-25]

A convenient convention for naming the concrete syntax phylum is to use the

same name as the corresponding abstract syntax phylum and capitalize the first letter of

each "word" within the name (e.g., FormalName). Occasionally you may have to invent

some other name if such a capitalized name has already been used, for example, as an

operator in the abstract syntax declarations. Attribute names are often abbreviated words

or phrases that are descriptive of what kind of attribute they are naming (e.g., t for text,

env for environment, etc.) [Ref. 11: p. 9; 10: p. 63]

Entrym declarations establish the correspondence between selections in the

abstract syntax and entry points within the concrete input syntax. Each entry declaration

has the form:

abstract-syntax-phylum - concrete-syntax-phylum.attribute-name;

This declaration specifies that when the current selection in the abstract-syntax tree is a

node of phylum abstract-syntax-phylum, the input is parsed according to the parse declar-

ations of concrete-syntax-phylum, and the value of attribute concrete-syntax-

phylum.attribute-name is inserted into the abstract-syntax tree, replacing the currently

selected subterm or sublist. Figure 14 is a partial listing of text attribute declarations and

entry declarations for Spec. [Ref. 10: pp. 62-65; 11: pp. 74-76]
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Module {syn mo*dule t; 1;
Interface {syn interface t; }

Where (syn where t;}
Concepts (syn concepts t; 1
Concept (syn concept t; );
FormalName { syn formial-namre t; 1;

ExpList { syn expressionjlist t:;
Exp ( syn expression t;)
Ident ( syn identifier t; 1;

module - Module-t;
interface - lnterface.t;

where - Wheret;
concepts - Concepts-t;
concept - Concept-t;
formal-name - FormalName.t;

expression-list - ExpList.t;
expression - Exp.t;
identifier - Identit;

Figure 14
Association Between Abstract Syntax and Input Syntax

c. Concrete Lexical Declarations

Lexical phyla should be declared for each keyword and other multi-character

token of the language. A declaration for the special token WHITESPACE should be

included at this point if it has not been previously declared. Examples of lexical

definitions are shown in Figure 15. [Ref. 10: p. 167]
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WHITESPACE: WhiteSpace< [ \t\n]* >;
AND: AndLex< "&" >;
OR: OrLex< "I" >;
NOT: NotLex< "-" >;

CONCEPTS: ConceptLex< "CONCEPT" >;
DEFINITION: DefnLex< "DEFINITION" >;
END: EndLex< "END" >;

SEMI: SemiLex< ";" >;
PLUS: PlusLex< "+" >;
MINUS: MinusLex-">;

INTEGERLIT: IntegerLex< [0-91+ >;
IDENTIFIER: IdentLex< [a-zA-Z][a-zA-Z_0-9]* >;

Figure 15
Lexical Definitions

d. Parsing and Ambiguities

The Synthesizer Generator uses the parser generator Yacc [Ref. 18] to create

the editor's parser. As the parser scans the input stream, it pushes and pops tokens

onto/from a stack according to the parsing declarations. A shift pushes the next token a

onto the stack; a reduce pops tokens off the stack when all tokens necessary to complete

a parsing rule have been seen. The resulting token (an occurrence of the left-hand-side of

a parsing declaration) is then pushed onto the stack before the next token a is parsed.

Yacc will detect and report any ambiguities in the input grammar. Ambigu-

ities are of two types: a shift/reduce conflict or a reducelreduce conflict. A s/uft/reduce

conflict arises when the parser cannot determine, based on the stack contents and the next

token a, whether to apply a reduction rule or to shift ax onto the stack, thereby deferring

the reduction. A reduce/reduce conflict arises when the parser can apply more than one
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reduction rule to the current contents of the stack. By default, Yacc resolves these

conflicts as follows:

" For a shift/reduce conflict, perform the shift.

" For a reduce/reduce conflict, reduce by the production declared earliest in the
specification.

These resolution rules will often not do what you intended. Therefore, some additional

mechanism is required to resolve ambiguities. [Ref. 11: p. 79]

Precedence declarations provide this additional mechanism for resolving

ambiguities in the input grammar. They must be listed prior to the parsing declarations.

These precedence declarations associate precedence levels with characters and lexemes.

There are three forms of precedence declarations:

left token-or-phylum,,...,token-or-phylumk;
right token-or-phylum ,....,token-or-phylumk;
nonassoc token-or-phylum,....,token-or-phylemk;

Each token-or-phylum can be a single CHAR constant, such as '+', or the

name of a lexical phylum, such as IDENTIFIER. The same precedence level and

associativity is assigned to all characters and lexemes denoted by token-or-

phylum ... ,token-or-phylumk. The order in which precedence declarations are listed in

the SSL specification is extremely important--each successive declaration receives a

higher precedence than the previous declaration(s) (i.e., precedences are declared low-to-

high). The keywords left, right, and nonassoc define the associativity of the listed

tokens. The effects of precedence and associativity are described below. [Ref. 11: p. 79]

The final token in a concrete syntax production determines the precedence

level and associativity of the production. Precedences and associativity can be associated
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with complete productions as well as with tokens. To assign an explicit level of

precedence to a production, which could be either the same as or differei.t than the

precedence level of the last token (if one is present at all), the parsing declaration uses the

form:

phylum-name ::= operator-name (list-of-tokens-and-phyla prec ioken-or-phylum);

Yacc uses these precedence rules to disambiguate the productions of the input grammar

as follows:

" When there is a reduce/reduce conflict, or there is a shift/reduce conflict and
either the input symbol (i.e., character or lexeme name) or the grammar rule has
no precedence and associativity, the disambiguation rules stated above are
applied and the conflicts reported.

* If there is a shift/reduce conflict, and both grammar rule and input character have
precedence and associativity, the conflict is resolved in favor of the action (shift
or reduce) associated with the higher precedence. If precedences are the same,
associativity is used: left associative implies reduce; right associative implies
shift; nonassociating implies error.

Using the -v option of sgen is extremely helpful in debugging such conflicts. The

y.output file generated by Yacc will indicate all shift/reduce and reduce/reduce conflicts

and which tokens caused them. After running sgen, edit this file and perform a search

for the word "conflict". [Ref. 11: p. 80]

Figure 16 is a partial listing of the lexical phyla, precedence declarations, and

concrete syntax parsing declarations for SPECDEF.
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P* lexical phyla .

WHITESPACE: WhiteSpace< \t W* >:
CONCEPT: ConceptLax< 'CONCEPT>;
DEFINITION: DefnLox-c 'DEFINITION" >;
END: EndLex< 'END* >;
VALUE: ValueLex< 'VALUE>;
WHERE: WhereLex< *WHERE>;
SEMI: Semil-ex % ;
COMMA: CommaLex<"'>
PLUS: PlusLex< '+*>
MINUS: MinusLex< -c >

P* precedenoce and assocatity rules/
left ;SEMI IDENTIFIER;
left VCOMMA;
left
left +-PLUS MINUS;

P* concrete input syntax */
Module :=(DEFINITION Interfaoe Concepts END)

(Module.t = Dot ModuleDed(Interface.tCorncepts~t;

Inierface :=(FormaiName Inherits Imports Export)
{interface.t = Intertaos Dedl(FormaIName.t, Inhrit.t, imports. t, ExporL t))

Where =(prec SEMI) ($,t - WhereEmptyO;)
I(WHERE ExpList) (Where.t - Wher9Exp(ExpListt);)

Con-ept - Comnpl' (Conoepts.t - (Conceptt :: ConoeptNil);)
I(Concepts Conoept) {Conoepts$l .t - (Conoept.t :: Copts$2.t)

Concept :=(CONCEPT FormalName : TypeSpec Where)
(Conceptt = ConoeptType(FormalName.tTypeSpec.tWhere.t);)

I(CONCEPT FormnalName FormalArg Where VALUE FormalArg Where)
(Concept t= ConceptValue(FomlnaiName.LForrnaLArg~l.t,Wherel t*

FormalArg$2.t,Where$2.t);)

FormaNanme =(Iderit FormalParm) (FormaiName.t - ForniNe e(Ide-t.tForrnaIParmt),)

Exp~ist (Exp prec COMMA) fExp~istt = Single Exp(E xp. t);)
(ExpList ,Exp prec COMMA) (ExpUst$1.t = IAatiExp(ExpList$2.t.Exp.t))

Exp Q: C) (E).t - Undsf-xpoj
I (Exp ='Exp pruc'-') (Expl.t - EqiaIExI2.Ex$3.t);)
I (Exp'+* Exp prec PLUS) (Expl.t . Mdd(Exp2tExp$3.);)

I(Exp'- Exp prec MINUS) (Exp$I t - SufractExp$2.tExp$3.t)-j

Ident -(IDENTIFIER) (Ident.t - Identifiew(IDENTIFIER);)

Figure 16
Lexical Phyla, Precedence and Associaiity Rules, and

Concrete Input Syntax Parsing Declarations for SPECDEF
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6. Refine the Display Representation

The final step to complete the initial version of the editor specification is to refine

the display representation. In Section IV.C.2 we suggested that the unparsing declar-

ations be written with the maximal number of resting places. Any undesirable resting

places should now have their selection symbol changed from @ to ^. It is very important

that the selection symbols in lists are defined according to the pattern shown in Figure 17

because selections in lists are handled specially. [Ref. 10: p. 1711

abstract syntax rule unparsing rule
list listType;
listType ListTypeNull() [@ =]

I ListTypePair(listElement listType) [@ A @1

listElement ListElementNul() [A ::= "<listElement>"

Figure 17
Unparsing pattern for list phyla

For example, the unparsing declarations shown in Figure 9 should be changed to

have some of the selection symbols on the left-hand-side of the unparsing rules changed

from @ to ^ as shown in Figure 18.

Finally, the editing-mode symbols in the unparsing declarations (i.e., the ::= and

symbols) need to be checked that they specify the desired text-editing properties for the

various operators. Specifically, if the operator allows text entry, the ::= symbol should be

used, but if text entry or text re-editing is not allowed, the : symbol should be used. Note

that the symbol ::= also allows textual re-editing of elements. Therefore, if the designer

wanted to allow the entry of individual lexemes but not full expressions, the unparsing
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rules for the phylum expression should be changed from what was shown in Figure 18

to those shown in Figure 19. [Ref. 10: p. 172]

start : Spec

Spec : ModuleNilI@:
I ModulePair J@:: ["%n%ril a]

module DefModuleDecl W@ ::- "DEFINITION"- @ @ /*n-
ENDI

interface InterfaceDecl @: @ "%tMn" @ "%n" 0 *%r'" @ -%b.nj

where WhereEmrpty [A :

I Where Exp [A ::= "WHERE"-@]

concepts ConceptNil [~
I ConceptPair r:=A [%O/nj@]

concept ConceptType [A ::= "O/t%n"CONCEPT"" "@ "/ 0t*/*n"
@ *0%bO/b%nl

I ConceptValue [A :="*/t%n"CONCEPT" @ @ -/o0/ofl"
@ -0%n"
"VALUE O@ "/ofl" @ "%b0/bM/*ni

formal-name: FormName [A @ "@]

express ion-list: SingleExp [A @]

I MuftiExp [=@"@

expression UndefExp [A =""

I Equal [A ="=@

I Add[A @ +0]
I Subtract@

identifier : Identifier [A : A]

Figure 18
Refined Unparsing Declarations for Spec

60



expression UndefExp [A "-=
Equal [^" " @]

I Add @ " +"@1
I Subtract @ " @1

Figure 19
Unparsing rules that forbid re-editing

7. Advanced Unparsing Features

We have already discussed the use of the control strings %t, %b and %n in

unparsing declarations to signal tab, backtab, and new line, respectively. It should be

noted that changing the left-margin (i.e., with %t or %b) has no immediate visible effect.

The change is only evident after the start of a new line. [Ref. 11: p. 64]

To prevent the undesirable effect of having long lines of display text broken in

mid-word, optional line breaks, indicated by %o, provide the means to specify places

where a term's display string may be divided into separate lines. The designer can

impose a hierarchical structure on the display string by the matched grouping symbols

%{ and %}. The editor will attempt to split long lines containing optional line breaks in

such a way that the minimum number of unparsing groupings will be split and the

amount of text on the line is maximized. A grouping only has effect if it contains an

optional line break. If indentation is desired only for the text that follows an optional line

break that is taken, the formatting command string %t*/ %o) may be used. A complete

listing of unparsing display commands is shown in Figure 20. [Ref. 11: pp. 63-66]
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Fornatting
Command Meaning

V move the left-margin one indentation unit to the right
/b move the left-margin one indentation unit to the left
%n break the line and return to the curent left-margin
%C return to current left-nmrgin of the rae line and overprint
%1 move to column one of the same line and ovprint
%T move right to the next tab stop
%M(c) move right to column c, where c is a positive integer
%o00 optionally, break the line and remn to the current left-margin
°/oC same as %0, but either all o no %C in a group are taken
%( beginning of an unparsing group
%) end of an unparsing group

4same as %t%{

%] same as %}%b
%S(style-name: enter the named style
%S) revert to the previous style
%% display a %

Figure 20
Formatting Commands

To see how some of these commands can be used, let's look at an example of an

unparsing declaration that includes groupings and optional line breaks. The following

declaration uses the formatting commands for beginning and end of an unparsing group,

beginning and end of an unparsing group with tabs and backtabs, and optional line

breaks:

expression : QuantiierExp [A ::= "0/0{" @ "(" @ "0/0o" @ "0/0)0/40/ o @ ")%]I

The resulting expression could be displayed in several formats that would be dependent

on the width of the current window. Figure 21 shows these different formats with one or

more of the optional line breaks taken.
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ALL(item : typel SUCH THAT foo(a) < 27:: hem = item + 1)

ALL(item : typel
SUCH THAT foo(a) < 27 :: item = item + 1)

ALL(item : typel SUCH THAT foo(a) < 27
:: item = *item + 1)

ALL(tem : type1
SUCH THAT foo(a) < 27

tem t *Rem + 1)

Figure 21
Effect of optional line breaks on display

D. DESIGN DECISIONS

1. Spec Subset

The subset of Spec I chose to implement is the Definition Module. Definition

modules are used in the requirements analysis phase of the software development cycle

[Ref. 1]. Implementing an editor for the definition module provides the initial support for

utilizing Spec in this phase of software engineering.

2. Type Checking

Editors created by the Synthesizer Generator can have the capability to perform

type checking provided the proper attribute equations are written to support this

checking. However, since other research is currently being done to implement a separate

type checker for Spec [Ref. 15], the decision was made to not implement this capability

in the syntax directed editor. Eventually, when the editor and the type checker are fully

implemented, both tools will be integrated into one larger tool that will perform both

functions.
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3. Display Representation

In order to make the visual display "user friendly", many of the constructs in Spec

had productions added whose purpose is to display a placeholder string. These

productions appear in both the abstract syntax and the unparsing grammar. The format of

these placeholder strings is the phylux name enclosed in angle brackets, e.g., <concept>

or <actualparm>.

Although not part of the original Spec grammar, these productions are declared as

the completing term for the respective phylum. The phyla that have this additional

production are all non-list phyla, therefore the completing term is also the placeholder

term for the given phylum. This causes the visual display to show where a selection

should be made at a later time if a template transformation is not selected.

Some constructs in Spec already have a usable completing term, specifically field,

type_spec, and expression, which all use the symbol ? to represent undefined

occurrences of the respective phylum.

4. Naming Conventions

The following conventions were selected for naming of phyla, operators, and

attributes:

* Abstract syntax phyla are all lower case (e.g., concept), and are exactly the same
as the original Spec grammar.

" Operators on abstract syntax phyla have the first letter of each "word" within the
operator name capitalized (e.g., NotGreaterEqual).

" Lexemes are fully capitalized (e.g., IDENTIFIER).
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" Lexical phyla operators are capitalized with the same conventions as abstract

syntax phyla operators. Additionally, with the exception of the special lexical

phylum WHITESPACE, each of these operators ends in the word Lex (e.g.,

NgeLex).

" Template transformation names are all lower case (e.g., "Single"), or are a symbol

made of one or more non-alphanumeric characters (e.g., *+" or W->=").

" Concrete input syntax phyla have the same name is the corresponding abstract
syntax phyla (with only a few exceptions) with the first letter of each "word"
with n the name capitalized (e.g., FormalName or IntegerUt, corresponding to
abstract syntax phyla formalname and integer_lit, respectively).

" Attributes are all labelled as a lower case t, since the only attributes used in this
editor are synthesized text attributes.

5. Implementation

A listing of the current implementation of SPECDEF is given in Appendix B. A

user's manual for the current version of SPECDEF appears as Appendix C.
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V. CONCLUSIONS

A. APPLICABILITY OF THE SYNTAX DIRECTED EDITOR FOR SPEC

The SPECDEF editor successfully demonstrates the feasibility of designing a CASE

tool for the specification language Spec. The current version of the editor supports a

subset of Spec consisting solely of definition modules and prevents the user from writing

syntactically incorrect specifications. All Spec constructs that are applicable to a

definition module are implemented in the editor. The SPECDEF editor provides the

means to quickly and correctly write Spec definition modules in support of the

requirements analysis pha-e of the software development cycle.

The display representation is designed in such a way that the editor can assist the

novice user in learning the syntax of Spec. As with other syntax directed editors for

other languages, this could be seen as a hindrance or an annoyance to the more

experienced Spec specification writer, since the method of building a parse tree of the

specification being edited requires the user to traverse the entire parse tree of the Spec

grammar itself.

A significant foundation has been laid for designing an editor that will implement the

entire Spec language. Approximately half of the Spec grammar rules have been

implemented.
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B. USEFULNESS OF THE SYNTHESIZER GENERATOR

The Synthesizer Generator prosed to be an extremely useful, albeit sometimes

difficult, CASE tool to assist in the design and implementation of a syntax directed

editor. The book and reference manual for the Synthesizer Generator [Ref. 10 and 11]

are not always clear in their explanations of the various concepts that must be mastered to

write a successful editor specification.

I found it very advantageous to refer to the specification of the toy.syn editor, one of

the sample editors that comes with the sgen system. The specification file toy.ssl can be

found in the /usr/suns2/ocal/syn/editors/toy directory on the suns2 system. There are

several other sample editors in the /editors subdirectory of /syn whose specification files

may provide insight to some readers.

The various options available when invoking sgen make the Synthesizer Generator

system very versatile. Specifically, the -v option to flag Yacc to produce the diagnostic

file y.output is extremely useful in debugging ambiguities in the input grammar. The

ability of sgen to create an editor for different windowing systems using the -w option

makes this system very powerful, since the same input file(s) can be used to create many

different editors that target specific systems.

The Synthesizer Generator creates many intermediate files during the process of

generating an editor. Unless you have prodigious amounts of free memory available, I

highly recommend that the -I option (lower case L) not be invoked. This option saves all

intermediate files, which can easily use up several megabytes of memory. Under normal

operation these files are deleted once the executable editor file is generated.
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Learning the editor system commands to navigate around the parse tree of a specifi-

cation being edited is rather difficult. There is quite a list of commands available; a

complete list appears as Appendix D. However, only a portion of the commands are

routinely used to edit a specification, as listed in Table 2. The use of these commands is

discussed in the user's manual, which appears as Appendix C. Once these commands are

learned, writing a Spec definition module is quick and easy.

Table 2: COMMONLY USED EDITOR COMMANDS

Command Key-binding

backward-preorder < AP >
beginning-of-line < ^A >
delete-next-character < AD >
delete-other-windows < AX1 >

delete-previous-character < DEL >
delete-selection < AK >
end-of-file < ESC-> >
end-of-line < AE >
enlarge-help < ESC Xz >
erase-to-beginning-of-line < ESC-DEL >
erase-to-end-of-line < ESC-d >
execute-command < Al or TAB >
exit < AC >
forward-preorder < AN >
forward-with-optionals < AM or RETURN >
left < AB >
next-window < AXn >
previous-window < A4 >
read-file < AXAR >
redraw-display < A L>

right < AF >
select < ESC-@ >
start-command < ESC-s >
write-named-file < AXAW >

68



C. DEFICIENCIES AND BUGS ENCOUNTERED

The S')ECDEF editor is strictly a syntax directed editor. There is no capability

provided for semantic checking. As stated previously, the type checking features that

sgen is capable of producing are not included in this editor since independent research in

this area is currently in progress. This means that, although a specification written using

the editor will be syntactically correct, it is possible for it to be incorrect semantically.

One deficiency with the SPECDEF editor is the lack of support to insert comments

into the specification being edited. Although sgen is capable of supporting this feature

when properly specified in the editor specification, time constraints prevented the

inclusion of this capabilty, which requires extensive coding to accomplish.

D. RECOMMENDATIONS FOR FUTURE RESEARCH

1. Implement the Complete Spec Language

The remainder of the Spec language needs to be implemented in the editor. When

this is accomplished, the editor will support not only the requirements analysis phase of

the software development cycle, but also the functional specification and architectural

design phases.

2. Integrate the Type Checker and the Editor

The type checker currently being implemented independently should be

integrated with the editor once both tools are completed. This will make the editor a very

powerful tool for software engineering with Spec. The combined tool will form the

foundation of an integrated Spec programming environment.
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3. Integrated Spec Programming Environment

Many different tools for Spec are under development or planned for future

research. A pretty printer has already been designed. The type checker is currently

under development. Future research projects include a consistency checker, an

inheritance expander, a test oracle, and a diagram generator. There are also plans to

design a translator from Spec specifications to compilable Ada code.

Each of the above mentioned tools, along with the editor, are planned for

integration into a programming environment for Spec. This environment will be capable

of supporting the entire software development cycle.

4. Investigate Applicability of Utilizing the GANDALF System

The GANDALF System [Ref. 7] might be more useful than the Synthesizer

Generator for creating a syntax directed editor. Some of the additional capabilities of

GANDALF are the ability to generate system environm : sa that could support multiple

programmers on large projects, and a limited project management system. The need for

these capabilities should be investigated, and if it is determined that such a need exists,

future versions of the editor should be built using GANDALF instead of the Synthesizer

Generator.

5. Automating the Design of an SSL Specification

After the conceptual breakthrough occurs on how to design an editor specification

using SSL, adding more constructs to the grammar becomes a relatively mechanical

process. The different sections of the SSL specification are closely related in terms of

names of phyla and operators. This indicates a possibility that some aspects of designing
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an SSL editor specification could be automated. For example, when an abstract syntax

rule is entered, the automation process could generate the display representation rules,

template transformation rules, etc., possibly through the use of pop-up windows that

request specific information for naming or formatting the additional rules, or asking for

informati )n about attributes.

Automating some portions of this process would enhance the usability of a tool

such as the Synthesizer Generator. Additionally, the amount of time to produce an editor

specification would be reduced dramatically.
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APPENDIX A

COMPLETE SPEC GRAMMAR

The following is a listing of the complete grammar for the Spec specification

language. The current version of Spec is 1.11. Optimization of the language is still

under research, so the reader can expect further revisions to Spec in the future.

versicn stam SHeader: spec.k,v 1.11 89/04/05 14:02:21 berzins Locked $

the gra.-L-ar, comments go from a "'" to the end of the line.
er-inal syrcis are entirely upper case or enclosed in single quotes (')

Nonterfinal symbols are entirely lower case.

Lexioal character classes start with a captial letter and are enclosed in j}.
in a regular expression, x+ means one or more x's.
In a reg-,lar expression, x* means zero or more x's.

in a reguar expression, [xyz] means x or y or z.
In a reg.Kar expression, [^xyz] means any character except x or y or z.
i. a reul.ar expression, 'a-z) means any character between a and z.

In a regupsar expression, . means any character except newline.

definitcns of iexical classes

%define Diglt !,'-9:

%define n gIt

%erise Letter-

%aefine Alpha C eter} {igitW" "

%cefire Blank \n
%de_.re Quote :[

%oef'ne Backslas "
%oeflne Char C "\ :BackslashC{Quote}I{BackslashC{Backslash})

defin;locs cf white space ano ccrnments

:JBRan.K)

definitions of ccmpound symbols and keywords

AND

OR "

NOT
IMPLES:""

IFF
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LE:"=

GE

NE :=

NLT

NGT

NLE
NGE :~=

EQV

NEQV

RANGE .

APPEND

MOD :(Backslash)IMOD
EXP :"**"

BIND

ARROW :.->.

IF :IF

THEN :THEN

ELSE :ELSE

IN :IN
7 :1U

ALL :ALL

SOM :SOME

NUMBER :NUMBER
q :y :SUM
PRODUCT :PRODUCT

SET :SET

MAXIKJM :MAXIMUM
MINIMUM :MINIMUM

UNION :UNION

INTERSECTION :INTERSECTION
SUCH :SUCH{Blank!'THAT

ELSE IF :ELSE{BlanK}'IF

AS :AS

CHOOSE :CH1ODSE

CONCEPT :CCN E P

DEF N ITN :DEFINITION

DELAY :DELAY

END :END

EXCEPTICN :__ EPT
EXPORT :EXPORT

FOREACH :FOREACH

FROM :FROM

FUNCTION :FUNCTION

GENERATE :GENERATE

HIDE :HIDE
IMPORT :IMPORT

INHERIT :INHERIT

INITIALLY :INITIALLY

INSTANCE :INSTANCE

INVARIANT :INVARIANT

MACHINE :MACHINE

MESSAGE :MESSAGE

MODEL :MCZEL

OD :0
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OF :OF

OPERATOR :OPERATOR

OTHERWISE :OTHERWISE

PERIOD :PERIOD

RENAME :RENAME

REPLY :REPLY

SEND :SINC

STATE :STATE

TEMPORAL :TEMPORAL

TIME :TIME

TO :TO

TRANSACTION :TRANSACTION

TRANSITION :TRANSITION

TYPE :TYPE

VALUE :VALUE

VIRTUAL :VIRTUAL

WHEN :WHEN

WHERE :WHERE

INTEGER LITERAL :{Int}

REAL LITERAL :{Int}"."{int}

CHAR LITERAL

STRINS L::ERAL :(Quote){Char}t{Quote

NAME :!Letter,{Alpha}*

* operator precedences

% ileft means 2t3-4 is (2+3)+4.

%lefr 1;', IF, DO, EXCEPTION, NAME, SEMI;
%left P,', COM1-,;

%left SUCH;

%left IFF;

%left IMP'LIES;

%left OR;
%left AND;

%left NOT;

%Ieft '', '', '=', LE, GE, NE, NLT, NGT, NLE, NGE, EQV, NEQV;

%nonassoc IN, RANGE;

%left U, APPEND;

left '-', PLUS, MINUS;

%left ''' , I', MUL, CIV, MoD;
% ieIt UMINUS;

%.'eft EXP;

%!ef: ', ', '(, '2. .', DOT, WHERE;

%left STAR;

!attribute declarat ions

* productions of the gra".ar

start

spec
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spec
spec module

A production with nothing after the "I" means the empty string

is a legal replacement for the left hand side.

module
function

I machine

I type

i definition

i instance of a generic module

Optcnally_virtuaj FUNCTION interface messages concepts END

'Virtal modules are for inheritance only, never used directly.

cp-iona-.y virtual MACHINE interface state messages transactions

te7pc:als c 7cepts END

type
S toornalv_vTrtual YPE interface model messages transactions

te-pnra:s cnrcepts END

delin:tion

:KI~NX-N nerface concepts END

in.stane
: NSTANCl crnal nane '=' actual name END

INSTANCE foreach actual name END

For mak'na instances or partial instantiations of generic modules.

7,.e foreach clau2se allows defining sets of instances.
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interface

formal name inherits imports export

This part describes the st--ic aspects of a module's interface.

The dynamic aspects of t',e interface are described in the messages.
A module is generic iff it has parameters.

The parameters can be constrained by a WHERE clause.
A module can inherit the behavior of tler modules.

A module can import concepts from other ',odules.
A module can export concepts for use by other modules.

inherits

inherits INHERIT actual-name hide renames

Ancestors are generalizations or simplified views of a module.
A module inherits all of the behavior of its ancestors.

Hiding a message or concept means it will not be inherited.
inherited components can be renamed to avoid naring conflicts.

nice

.name - st

Useful for providing limited views of an actor.
--fferent user classes may see differer.t views of a system.
Messages and concepts can be hidden.

renames

renames RLNA.C- NAKE AS NAME

* ~a.rg ;s -r.f~ prevent ing name conflicts whet in er
7o i-r.. so-rces, anio for acapting modules fcr new s

Tne para-e.ers, noce, ard state components, messaes, exn' 2n1,

an,. ,nce s cf an. ac*d: can be renamed.

- n :s FHM.actu;a. nan3e

exist'.
EXJ<'HT na'-e "-s
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mnes s ages

messages message

mesasage

M-ESSAGE formal message operator response

respc~'s

reeponenboe
repos bd

response_cases

response_ cases
Wr-EN expression _ ust response body response cases

o:HERW:SE response bcay

response
o-:c:5e reply sends rstc

C..cose
V :.e' Screstr:ictIon

rep -y
ac_ _ sa. nessage wne'

_ - essa~e wnere uosed ir qene:a -crs

senO

-- Lcpe, S\ ac, -a. nessaue TO act-ual cra7e wne-e
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TRANSI7ION express~on list for descri.bing state c !anges

formal messacze

opt-iona!_exception optional-formal _rpme formal arguments

actual _message
optional_exception optional_actual_name formal arg-uments

where

WHERE expression-list

%prec SEMI must have a lower precedence than WF.ERE

CPo -c:na _ 1xorac

%t:ec Su--'.7

.oreaccr.o

f o-eacn. :s ;se - t descr--De a set of messages or instances



concepts

concepts concept

concept

CONCEPT formalname ' :' typespec where

c ons ants

CONCEPT formal_name formal_arguments where VALUE formal_arguments where
functions, defined with preconditions and postconditions

model data types have conceptual models for values

MODEL formal_arguments invariant

slate machines have conceptual models for states

STATE formalarguments Invariant initially

lnvarlant ' nvar:ants are true for all states or instances

:NVA3-AN: expression list

nta -y ! rltial ccna.tions are true only at the beginning
:N::A.LY expression "ist

transaz2ti2-5

2 ra-sa: crns tra-sact cr

7AeA ' -a7n7e '=' acticn list where

ra .sac ns are atonic.
ne where clause can specify timing constraints.

action list
actioc ist '' ac:IC7 %prec SEMI seqence

a c0i sqn
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actiorn action %prec STAR unordered seL of actions

IF' alternatives F! choice

IDO alternatives OD repeated choice

I act..ial-name a normal message or subtransaction

IEXCEPTION actual-name an exception message

al1terniatives

alternatives OR guard action_-list

g uard action list

ru ard

W;REN expression ARR.OW

te-p:orals o-erpc.ral

errpc ra:
-EMPORAL NANE- where response

..e7'c7ra eveno-s are triggea a-- ao-solute times,

ters of one lccaL clock of teactor.
7ne "wn ere" descr-bes toe t:-gqerlrg conditions

:7 er-s cf ::t,??Eano: D-ELAY.

formna I na.-e

NAN"E fcrma-' parameters

formal-pararreters pararreter va.ues are determined at specification time

'4feld list 'V' wnere
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formalargumrents arguments are evaluated at run-time

(' field list ')'

{ I

field-list

field list ',' field

f }

I field
I }

field

name_list ':' type_spec
I I

'' NAME ' typespec

type spec

actual name name of a data type

name list
r~ane- lst NAM:

, NA .E

opt: ona_a - :anae

acactaa 
5

am

NAM7 :tza taraneters

actual parameters parameter values are determined at specification time

%Trec SEM: '. n,.st have a lower precedence than ''
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actual arguments arguments are evaluated at run-time

• ' arglist '3'
33

%prec SEMI ! must have a lower precedence than '
33

arglist

arg_ list ',' arg %prec COMMA

arg
33

arg
expression
33
pair
33

expressLcnlist
expressionlist ',' expression %prec COMMA

expression %prec COMMA

expression
quantifier ' (' field list restriction BIND expression
33
actual-name actual arguments
33

actual-name '@' actual name actualarguments
33
NOT expression %prec NOT

expression AND expression %prec AND

expression CR expression %prec OR

expressicn :ML:ES expression %prec IMLIES

expression IFF expression %prec IFF

expression '<' expression %prec LE

express:on '>' expression %prec LE
expression '=' expression %prec LE

expression '' expression %prec LE

expression LE expression %prec LE
33
expression GE expression %prec LE
33
exprrission NE expr-ess on lorec L

(3
expression NLT expression %prec LE

33
expression NGT expression %prec LE
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i expression NLE expression %prec LE

expression NGE expression %prec LE

(I

expression EQV expression %prec LE
I e

I expression NEQV expression %prec LE

'-' expression %prec UMINUS
e e
expression '+' expression %prec PLUS

expression '-' expression %prec MINUS
e U
expression '*' expression %prec MUL

expression '/ expression %prec DIV

expression MOD expression %prec MOD

expression E expression %prec EO

expression U expression tprec U

expression APEND expression %prec APEND
{I

expression IN expression %prec IN

e expression %prec STAR
I x is the value of x in the previous state

'$' expression %prec DOT
SSx represents a collection of items rather than just one

'sl = jx, $s2} means sI = union({x}, s2)
'si : x, Ss2j means s = append UxJ, s2)

expression RANGE expression %prec RANGE
'x in [a .. b] ff x in {as. b} iff a <= x <= b

TMa h cs sorted in increasing order

expression ' .' Nk" %prec DOT

expression ' T' expression ' ' %prec DOT

'U( expression')

* ' expresslc- NA ')' !expression with un.its of measurenent

stanoard time units: NAROSEC MICROSEC MILLISEC SECONDS MINUTES HOURS

DAYS WEEKS

Ti The current local time, used in temporal events

DELAY The time between t'-i triggering event and the resDonse

PERIOD The time between successive events of this type

literal

literal '@' actual name literal with explicit type
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An undefined value to be specified later
(1

S' An undefined and illegal value

I IF expression THEI. expression middle-cases ELSE expression FI

middle cases

middlecases ELSE IF expression THEN expression
{}I

{}I

quantifier

ALL

ISOME

so

SU M

PRODUCT

SET

M'AXIMUM

MIN:N:MJM

UN:ON

:NTERSECT:N

excresscon

liera"

?EAL LITERAL

CHAP TEPAL

STR:NG LITERAL

'' NAME enumeration type literal
{ I

' expressions ']' sequence literal
:1

'' expressions ' set literal
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I i' expressions ';' expression '}' map literal
(I

I ' [ pair-list ' ' tuple literal
(1

{' NAME BINI expression ' union literal

relation literals are sets of tuples

expressions
expressionlist

I

pair list

pair list '4 pair

pair

pa:r

tame lis: BIND expression

operatcr Is:

operatcr i4st operator_symbol

operatorsymoo

cperator_syroo2

N::

AND

0??

E S

*=,

SE

N

NL5
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NGT

I NLE

I NGE

iNEQV

I MOD
f )

E XP

k? PE N

1N

.4A N' 7-
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APPENDIX B

. SPECDEF SSL SPECIFICATION FILES

The following are the SSL specification files for the current version of the SPECDEF

editor. There are five modules broken down as follows: abstract syntax and template

transformations, lexemes, attribute declarations, concrete input syntax, and unparsing

schemes.

A. ABSTRACT SYNTAX AND TEMPLATE TRANSFORMATION RULES

The file abstract.ssl contains the abstract syntax grammar and the template transfor-

mation rules on that grammar for the SPECDEF editor.

/ File: ABSTRACT.SSL */

/* ~Tis f4-e cota-ns the abstract syntax for the Definition Module *.

s.osez of the Spec specification language for the SPECDEF editor. /

alsc ccutains tne template transformations 7 the abstract '/
syrrax pro;tricns. */

/* ans- .:acz sy2-x /

root srar:;
start Spec spec)

opt. a 1st spot;

spec Moo eNil) /" completing term '/
Mooule;a.r(rrodule spec) /* allows addition of

cthe-r =cdu-l---z

moo.;ie DefModleDecl(interface concepts)

/I Note: Spec grammar has been modified for this

editor to go directly to the Definition

Module declaration from Module */

interface InterfaceDel (formalname inherits imports export)

optional inherits;

inherits inheritN i)
InherizPromp) /* pl-ceholder term */

lnheritStrmt(:i-.herits actual name hide renames)
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cpt~onal hide;
hide HideN'l()

Hide~ro.,p:() /* placeholder term.~
I HideList (namelist)

opt:onal renames;

renames RenaneNil)
I RenamePrompt() I* placeholder term1

RenameStnt(renames identifier identifier)

optional imports;

imports ImportNil()

i ImportPrompt)) /* placeholder term ~
i ImportStnt (imports name-list actual-name)

optional export;
export ExportNil()

I ExportPrompt)) /* placeholder term '
ExportList (name list)

optiona' where;
wnere WhereEmpty))

W'ere~rompt)) /* placeholder term '
WhereExp(expression_ list)

Z PtIona_ -szz-cepts;
ccncepts C on -ept.N~ 11

ConceptPair (concept concepts)

cept Concep-Corrp( I' completing term *
ConceptType (forralnamc type spec where)
ConceptVa lue (formai!-name formal arguments where formal 1ar~Tmnt s

wnere)

optional f':nrI_ _para-e :ers;
fcrTaT. ra-.ewrs Fcrnra'Par.-rpty()

F~ra7P-0p () /* placeholder term I/
,crm.aParrnLtsc(field litwhere)

tp:For.-fcc-al arzetty;

FrnaLArq~ro.Tpt)) I' placeholder term I/

felc est _ecIsttc!p (I corpleting ter~r

field UndefFieid)) /* completing term/
Field~ame:,ist. (name_ list type spec)
EieldCcllection.)identifier type-spec)

typespec Undefype)) 1* completing term ~
NamedType (act ual _ name)

name l4st Namedent )identl'aer)

Nane~airrnamPI'st identifier)
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actual-name Actual~arnmList(ide~tifier actual parameters)

optional actual parameters;

actual parameters ActParmEmpiy(
i ActParrr~rompz() /* placeholder term ~
IListOfArgs )arg list.)

optional actual Argur!ents;

actual-arg-uments ActualArgNil()

i ActualArgPrompt)) /* placeholder term ~
jActualArgList (arg list)

arg-list ArgListEmpty() /* completing term ~
I SingleArg(arg)

MultiArg(arg list arg)

arg ArgComp() / completing term ~
Argtxp (expression)

I ArgPair~pair)

exrressLc7 sL EmptytxpList() I' completing ter, ~
* Sinqletxp~expression)

MlniExp~expression_ list expression)

excress- c7 UndefExp() I* completing term I

QuantifierExp(guantifier field list restrictiion expression)

:dentExp(actual name actual_arguments)

Am~xp(actual name actual name actual argomenis)

* NotExp(expression)

AndExp~expression expression)

OrExp~expression expression)

impliestxp (expression expression)

iffEx:)expression expression)

LessThan~expression expression)

GreaterThan (expression expression)

Equal (expression expression)

Lesstcual (expression expression)

GreanerEqual (expression expression)

NcEq~al(exression expression)

NorlessTha.(expression expression)

NsI~reater~hna.(expression expression)

Noitess~qaa.(expression expression)
Nc zlreanertcual )expressi on expression)

!1aaen(expression expression)

Nrc q valevn(expressicn expression)

.5cryX~rwzfexpression)

AMd(expression expression)

Sustract(exoression expiression)

Divide~expression expression)
ModExp~expression expression)

Expanenn~(expression expression)

TExp~expression expression)

AppendExp~expression expression)

InExp~exptession expression)

Star )expression)

Ccl lectExp )expression)
RangeExp~expression expression)

Do!Exp~expression identifier)

SqBcacxec~xp(expression expression)

ParenExpfexpresslcr)
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I MeasureExp(expression identifier)
I TimeExp()

I DelayExp()

I PeriodExp()
I Constanrtliteral)
I Litera1Type(literal actual-name)

I IllegalExp()
I IfThen (expression expression middle_canes expression)

optilonal middle_cases;
middle-cases MidCaseNil()

I M~iddlePrompt() I* placeholder term *
I MidCase (middle_cases expression expression)

quantifier QuantifierCamp)) /* placeholder term ~
I All)

I SomeoC
I Number()

I Sum()
I Product()
I Seto)

I Maximum()
I Minimum ()

i Union))

i Intersection))

restriction RestrictComp)) /* placeholder term ~
i RestrictNil()

SuchThat (expression)

literal EmptyLiteral() /* placeholder term ~
I IntLiterallinteger_lit)

I RealLiteral(real_ lit)
I CharLiteral (char-lit)

I StringLiteral (string lit)

Enumeration (identifier)

Seciuence(expressions)

SetLiteral (expressions)

MapLiteral (expressions expression)

Tupleiteral (pair_ list)

I OneOfLiteral (pair)

expressions ExpressionsComp)) Q placeholder tern ~
ExpressionsNil()
ExpressionsList (expression list)

pair-!:SO PairListComp() /* placeholder term /
SinglePair (pair)

MultiPair(pair list pair)

pair PairBind(name_ list expression)

integer-lit IntConstant(INTEGER_LIT)

real-lit RealConstant (REALLIT)

char-lit CharConstant (CHAR_LIT)
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string_ lit SzrigCnsant(S7RINGLII)

identifier Identifier(DENlTlER)

V* template commands

transform inherits

on "empty" <inherits>: InheritNil(),

on "addinherit" <inherits,: InheritStmt(<inheriis>,<actual_name>,

<hide>, <renames>)

transform hide

on "empty" A:ide>: HideNil(),

on "addhide" <hide>: HideList(<name-list>)

transform renames

on "empty" <renames>: RenameNil(),

on "addrename" <renames>: RenameStmt(<renames>,<identifier>,<identifier>)

transform imports

on "empty" <imports>: ImportNil(),

on "addimport" <imports>: ImportStmt(<imports>,<name liso>,<actual _name>)

transform export

on "empty" <export>: ExportNil(),

on "aadexport" <exporn>: ExportList(<name list>)

transform where
on "empty" <where>: WhereEmptyo,

or "addwhere" <where>: WhereExp(<expression_list>)

transforr concept
on "type" <concept>: ConceptType(<formal_name>,<typespec>,<where>),

on "valu-e" <concept>: ConoeptValue(<formal_name>.<formal arguments>,

<whnere>, <formal_argjuments>,<where>)

transform forma Ipa rameters
a"empty" <formal parameters>: FormalParmEmptyO,

o"fie~dlisn" <formal_parameters>: FormaiParmList(<field_ list>,<where>)

transfcrm fcryal arourments

orn "empty" <ocrmalarguments>: FormalArgEmpty))

on "fieldlisn" <formal arguments>: FormalArgList(<field list>)

transform field list

on "single" ' ield-list>: SingleField)<field>),
on "M--tlple" Vild-list>: MultiField(<field_ list>,<field>)

transform field

on "namelist" <field>: FieldNameList(<name_2ist>,<type spec>),
on "collection" <field>: FieldCollection(<identifier>.<type spec>)

transform type_ spec

on *named" <type_spec>: NamedType(<actual_name>)

transform name-list

on "single" <name-list>: Nameldent(<identifier>),

on "multiple" <name list>: NamePair(<name_ list>,<identifier>)
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transform actual_parameters
on "empty" <actual -paraimeters>,: ActParmEmptyfl,
on "arglist" <actual _parameters>: ListOfArgs(<arg list>)

transform actual arguments
on. "empty'N <actual_arg-uments>: ActualArgNil(),
on "arglist" <actu.al _arguments>: ActualArgList(<arg-list>)

transform arg list
on "single" <arg list>: SingleArg(<arg>),
on "multiple" <arg list>: MultiArg(<arglist>,<arg>)

transform arg
on "expression" <arg>: ArgExp(<expresaion>),
on "bindpair" <arg>: ArgPair(<pair>)

transform expression list
on "single" <expression_list>: SingleExp(<expression>),
on "multiple" <expression list>: M4ultiExp(<expression_list>,<expression>)

transform expression
on %quantify" <expression>: QuantifierExp(<quantifier>,<field_- list>,

<restriction>, <expression>),

on. actname" <expression>: IdentExp(<actual_name>,<actual -arguments>),
on "@" <expression): AtExp(<actual_name>,<actual-name>,

<actualarguments.).
,:n "-Pr psior>: NotExp(<expression>),
on. "V" <expression>: AndExp(<expression>,<expression>),
on " . <expression>: OrExp(<expression>,<expression>),
on "implies" <expression>: ImpliesExp(<expression>,<expression>),
on "iff" <expression>: IffExp(<expression>, <expression>),
on. <n <expression>: LessThan(<expression>,<expression>),
on ">" <expression>: GreaterThan(<expression>, <expression>),
on1 .- " <expression>: Equal (<expression>,<expression>),
on "<=" <expression>: LessEqTual(<expression>,<expression>),
on ="<expression>: GreaterEqiual (<expression>,<expression>),
cn -= <expression>: NotEqual(<expression>,<expression>),
on "-"<expression>: NottessThan(<expression>,<expression>),
or.n->. <expression>: NotGreaterThan(<expreasion>,<expression>).
Onr. = <expression>: NotLessEqual(<expression >,<expression>).
on "> <expression>: NotGreaterEqual(<expression>,<expression>),
on N~l<expressionr>: Equivalent(<expression>,<expression>).
on"= <expression>:. NotEquivalent(<expression>,<expressi on>),
or. "urr4nus" <expression>: UnaryMinus (<expression>),
on " <expression>: Add(<expression>,<expreabs~un>i,
or - <expression>: Subtract(<expression>,<expression>),
on n*" <expression>: Multiply(<expression>,<expression>),
on ./n <expression>: Divide (<expreasion>,<expression>),
on "mod" <expression>: kModExp(<expreeuion>,<expression>),
on, ... <expression>: Exponent (<expression>,<expression>),
on "U" <expression>: rExp(<expression>,<expresaion>),
on "append" <expression>: AppendExp(<expression>,<expression>),
on "in_exp" <expression>: InExp(<expression>.<expression>),
on "star" <expression>: Star(<expression>),
on "collect" <expression>: CollectExp(<expression>),
on "range" <expression>: RangeExp(<expression>. <expression>),
on "dot" <expression>: DotExp(<expression>,<identifier>),
on H.I <expression>: SqBracketExp (<expression>, <expression>),
on. parens" <expression>: ParenExp (<expression>),
on "measure" <expression>: MeasureExp(<expression>,<identifier>),
on, "time" <expression>: 'TimeExp)),
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on "delay" <expression>: DelayExpo,

on *Period" <expression>: PeriodExpo),

on "constant" <expression>: Constant(<literal>),
on "lit -type" <expression): LiteralType(<literal>,<actual-name>),
on "illegal" <expression>: IllegalExpo,
on "if-then" <expression>: IfThen(<expression>,<expression>,<middle-cases>,

<expression>)

transform middle cases
on "empty" <middle-cases>: MldCase~il(),

on "middle" <middle-cases>: !idCase(<middle-cases>,<expression>,<expreusion>)

transform quantifier
on *all" <quantifier): All(),
on 'some" <quantifier>: Some)),
on "number" <quantifier>: Numbero,
on "sum" <quantifier>: Sum(),
on "product" <quantifier>: Producto,
on "set" <qruantifier>:. Seto),
on "max" <quantifier>: maximum(),
on "min" <quantifier>: Minimum)),

on "uni on" <quant-ifier>: Union)),

on "intersect" <quantifier>: Intersection()

transform' rest-r'ctcn

on "ernpty" <restri4cticn>: RestrictNilV),

on "suc'htnat" <restriction>: SuchThat(<expression>)

transfcrr 14te:a-

on "irt" <literal>: IntLiteral(<integer lit>),

on "real lit" <1iteral>: RealLiteral (<real -lt>),

on "char-lit" <literal>: CharLiteral(<char_ lit>),

on "str lit" <literal>: StringLiteral(<string_ lit>),

cn "enum" <literal>: Enumeration(<identifier>),

on "seq" <li4teral>: Sequenice(<expressions>),

on "set" literal>: Setiteral(<expressions>),

on "map" <literal>: MapT-iteral(<expressions>,<expressi-on->),

on "tuple" <literal>: TupleLiteral(<pair_ list>),

on "one cf" <Iiteral : OneOfLiteral(<pair>)

'ransfcrrn express -ons
on "empty" <expressions>: ExpressionsNil(),

on "explist" <expressions>: Expr-essionsList(<expression_ list>)

transfcrr pair-lis-

on "s-ngl" <arls> SinglePair(<pair>),

on "mlt" pairlist->: Multi4Pair(<pair list>,<pa~jr>)
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B. LEXICAL PHYLA DECLARATIONS

The file lexemes.ssl contains the declarations of the lexemes for the SPECDEF

editor (i.e., the keywords, puncutation maiks, and other special characters.

/* File: LEXEMES.SSL */
I" "1

This file contains the lexeme declarations for the SPECDEF editor

/" lexemes /
WHITESPACE: Whitespace< [\ \t\n]* >;

AND: AndLex< "&" >;

OR: OrLexe "I* >;

NOT: NotLex× "-I >;

I.PLIES: ImpliesLex< "=>" >;
-FF: iffLex< "<=>" >;

GtLex< ">" >;

LtLex< "<" >;

LE. LeLex< "<=" >;

GE: GeLex, "=";

NE: NeLex< "=>;

NLT: NltLex< "-<" >;

NGT: NgtLex< "->" >;
NLE: N-IeLex< "-<=" >;

NGE: NgeLex< "~>=" >;

EQV: EqvLex< "==">;

NEQV: NeqvLex< "==";

RANGE: RangeLex< ".." >;

APPEND: AppendLex< " " ;

MOD: ModLex< ",\" >;
EXP: ExpLex< "">;
BIND': Bln -Lex< ":">;

I F: :fLex< ":7" >;

THEN: ThenLex< "THEN- >;

ELSE: EiseLex< "ELSE" >;
IN: inLex< "N" >;

U: Ubex< "n" >;

ALL: AI-Lex< "ALL" >;

SOME: SomeLex< "SOME" >;

NUMBER: NumberLex< "NUMBER" >;
SUM: SumLex< "SUM" >;

PRODUCT: ProductLex< "PRODUCT" >;

SET: SetLex< "SET" >;

MAXIMUM: MaximumLex< "MAXIJM" >;
MINIMUM: MinimjmLex< "MINIMJM" >;

UNION: UnionLex< "UNION" >;

INTERSECTION: intersectLex< "INTERSECTION" N;

SUCH: SuchLex< "SUCH"[\ \t\n]"THAT" >;
ELSE IF: ElseifLex< "ELSE"f\ \t\nj]"IF" >;
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AS: AsLex< "AS" >;

CONCEPT: ConceptLex< "CONCEPT" >;

DEFINITION: DefnLex< "DEFINITION" >;

DELAY: DelayLex< "DELAY" >;

END: EndLex< "END" >;

EXPORT: ExportLex< "EXPORT" >;

FI: FiLex< "FI" >;

FROM: FromLex< "FROM" >;

HIDE: HideLex< "HIDE" >;

IMPORT: ImportLex< "IMPORT" >;

INHERIT: InheritLex< "INHERIT" >;

PERIOD: PerjodLex< "PERIOD" >;

RENAME: RenameLex< "RENAME" >;
TIME: TimeLex< "TIME" >;

VALUE: ValueLex< "VALUE" >;

WHERE: WhereLex< "WHERE" >;

SEMI: SemiLex< ";" >;

COMA: CommaLex< "," >;

PLUS: PlusLex< "+" >;

MINUS: MinusLex< "-">;

g L: MulLex< "*" >;

DIV: DivLex< "/" >;

UMINUS: UminusLex< "-" >;

DOT: DotLex< "." >;

STAR: StarLex< "" >;

NTGER LIT: IntegerLex< [0-9]- >;
REAL L:T: Rea!Lex< [-9]+"."[0-9j+ >;

CHAR LIT: CharLex< "'">n;"'"

STRING LIT: Stri.ngLex< > ;\\3"[] ;
IDENTIF:ER: IdentLex< [a-zA-Z] [a-zA-Z_0-9]* >;

C. ATTRIBUTE DECLARATIONS

The file attribs.ssl contains the attribute declarations and replacement rules for the

concrete input syntax for textual input.

/" File: ATTPIBS.SSL */
/* */

/" This file ccntains the attribute declarations for the concrete "/

/" input syntax for the SPECDEF editor.

/I association between abstract syntax and concrete input syntax */
Module syn module t; };

Interface syn interface t; 4;
Inherits syn inherits t; };

Hide f syn hide t; 4;
Renames syn renames t; 4;
Imports syn imports t; };

Export syn export t;

Where syn where t; };

Concepts syn concepts t; i;
Concept syn concept t; V
Forra.Na-e syn formal nane t; ;

95



E'orma'Parm syn focrmal_parameters t; }

FormraiArg (syn formal_arguments t; 1;

Fi±eld-'ist {syr. field_ list t; )

Field {Syr fisid t;

TypeSpec {syn type spec t; 1;

NameList syn name_ list t; 1

ActualName {syn actual_nrkme t; }

ActualParm syn actual parameters t; 1

ActualArgs syn actual_arguments t; )

ArgList {syn arg list T; ~
Arg (syn arg t; )

ExpList {syn expression -list t; ,

Exp {syn expression t; )

MiddleCases {syn middle_cases t; }

Quantifier syr. quantifier t; )

Restriction {syn restriction t; 1

Literal {syn literal t; )

Expressions syn expressions t; }

PairList (syn pair_ list t; )

Pair {syn pair t; )

Integeri-it {syn integer lit t; )

Rea'L:t Isyr. real _lit t;

CrLit {syn char _lit- t;

StrinqLit Isyn string_ lit t; 1

:dent {syn identifier t; I

1' replacemernt rules '

module - Module-t;

4nterface - Interface.t;

inherits - :nherits-t;

hide- Hide.t;

renamnes - Renames.t;

imports - Imports.t;

export - Export.t;

where - Where.t;

concepts - Concepts.t;

Concept - Loncept-t

formal -narne - FormalNamre.t;

f ormal _parar~eters - Formal~arr..t;

formal _ar r;:ers - FornalArc.t;

field-list - FieldList.t;

field - Field.t;

type_spec - TypeSpec.t-;

name-:list - Name' ist .1;

actua--name - ActualName.t;

actual_parameters - Actua7Parm.t;

actual _arguments - ActualArgs.t;

arg list - ArgList.t;

arg - ~ Arg.t;

expression list - Exp'-tst.t;

expression - Exp.t;

middle-cases - MiddleCases.t;

quantifier - Quantifier.t;

restriction - Restriction.*,;

literal - Literal.t;

expressions - Expressions.t;

pair list - PairList.t;

pair - Pair.t;
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Integerlit I 1ntegerLit.t;

real lit ~ Rea!Lit.t;

char-lit ~ CharL t..t;

string lit - Strinq'.t .t;

identifier ~ Ident.t;

D. PRECEDENCE RULES AND CONCRETE INPUT SYNTAX

The file concrete.ssl contains the precedence and associativity rules for the concrete

input syntax, plus all the concrete parsing declarations.

/* File: CONCRETE.SSL '/
/" */

I' This file contains the precedence and associativity declarations */

/" and the concrete input syntax parsing rules for the SPECDEF editor. '/

/* precedence and associativity declarations */

ef~t ''F IDENTIFIER SEMI;

left , COMMA;

eft SUCH;
.eft IFF;

left IMPL:ES;
left '' OR;

left '&' AN:;
left '-' NOT;

left 'C, '>' GLE E NE NL NGT NLE NGE EQV NEQV;

nonassoc iN RANGE;

left U APPENO;

left ' ' '-' PLUS MINUS;
left ''' 'I' MUL CV MOO;
left I'N' S;

left FX?;

left 'S'''''' ' 'C- WHERE;

left S:kR;

/* ccncrete inp-. syntax /

Mocue : EFNT7ON interface Concepts END)

{Moauie.t = DefModuleDecl(Interface.t,Concepts.t);

Interface ::= (tcr73Na e inherits imports Export)
lInterface.t - InterfaceDeci(FormalName.t,inherits.t,

Imports.t,Export.t);}

Inherits ::= () jSS.t = InheritNil();)

I (NHERIT nerits ActualName Hide Renames)

j.nheritsSi.t = InheritStmt(InheritsS2.t,ActuaiNane.t,
Hide.t,Renames.t);)

Hide ::= {$$.t = HideNil();)
(HD:E NameList) {Hide.t = HideList(NameList.t);)

Renames () '$$.t = RenameNil();}
(Renames RENAME Ident AS Ident)

(RenamesSl.t = RenarneSt-r(RenaesS2.tidentSl.t,ldentS2.t);j
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lrnpc rts )) {S.t = ImportNil();}

I (Impcrts IM-rCRT NameList FROM ActualName)
(IrnportsS:!.t = ImportSt mt(Imports$2.t,NameList.t,Actua.lName.t);}

Export 0) fSS.t = ExportNil();)

I (EXPORT Name'-ist) (Export.t = ExportList(NameList.t);}

Where (prec SEMI) ($$.t =WhereEmptyo;)

I (WHERE FlxpList) (Where.t, - WhereExp(ExpList.t);)

Concepts :=(Concept) (Concepts-t - (Concept.t ::ConceotNil);)

I (Concept Concepts)
(Concepts$1.t - (Concept.*.: Concepts$2.t);l

Concept :=(CONCEPT FormalName '.' TypeSpec Where)

(Concept.t - ConceptType (ForxmlName t,TypeSpec.t,Where.t) ;j
I (CONCEPT FormalName Formal~rg Where VALUE FormalArg Where)

fConcept.t = ConceptValue(FormaIName.t,FormalArg~l.t,Where$l.t,

FormalArg2.t,Where2.t);)

ForfralINarne (Ident FornaliParm)
{FormalName.t = FormName(idient.,FormalParm.t);)

Fcrmal-arr ::=(){S.t = FormalParmErptyo;)
( 'FieldList )'Where)

jFormalParm.t = FormalParmList(FieldList.t,Where.t);

FormalArg ::=(){S.t = FormalArgEmptyU;}
FieldList f')

JFormalArg.t = FormalArgList (FieldList .t);

7-el-dList (Field) iFieldList.t = SingleField(Field.t);)
(Field'-'st ',' Field)

!Fi'eldList.S1.t = MultiField(FieldListS2.tField.t);I

Field ('I) {ield.t = UndefFieldfl;)

( NarreL1L ' TypeSpec)
(Field.t = FieldNameLst(NameList.t,TypeSpec.t-);)

US'dent ' :' TypeSpec)

jF~eld.t = Fi eldColiection(ldent.tTypeSpec.t);)

7ypeSpec :: '' TypeSpec.t = UndefTypeo;}

* (Act,.;al'Nwime) {-ypeSpec.t = NamedType(ActuaNane.t);)

Name'-isz (:et NameLiSt.t = Nameldent(Ident.t);*)
(N&-eList ' , Idient)

'NameLst$1.t = NamePar(NameList2.tdert.t);)

ActualName (Idernt Actual~arm)
(ActualName.t = ActualParmList(Ident.t,ActualParm.t);)

ActualParm :=(prec SEMI) {SS.t - ActParmEmptyo;)

UUArgzist'' (ActualParm.t = ListOfArgs(ArgList.t);)

ActujalArgs (prec SEMI) ($$.t - ActualArgNil();)

('ArgList)' (ActualArgs.t- ActualArgList(ArgList.t);)

ArgIist (Arg) (ArgList.t = SingleArg(Argt);)
1 (Arg'-ist ',' Arg prec COMMA)

fArgLstS$.t = MultiArg(ArgList$2.t,Arg-t);l
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Arg (E xp) {Arg.t -ArgExp(Exp.t);)

I (Pair) )Arg.t = ArqPair(Pair-t);)

ExpList (Exp prec COMMA) (ExpList.t - SingleExp(Exp.t);)

I (Exp'L.st', Exp prec COMMA)

(ExpList~l.t -MultiExp(ExpListS2.t,Exp.t);)

Exp :: ?)(Exp.t -UndefExpc';)

I (Quantifier '( FiEeldList Restriction BIND Exp ''

(Exp$l .t - QuantifierExp(Quantifier.t,FieldList .t,
Restriction.t,Exp$2.t);

i (ActualName ActualArgs) {Exp.t - IdentExpCActualNme.t,ActualArgs.t);)
I (ActualName '@' ActualName Actu&Akrqs)

{Exp.t = AtExp(ActualNamel.t.ActualNzne2.t,ActualArgs.t);)
(''Exp prec NOT) iExp$1.t - NotExp(Exp2.t);)

(Exp '&' Exp prec AN4D) fExp$1.t. - Andzxp(ExpS2.t,Exp$3.t);)
(Exp '1' Exp prec OR) lExp~l.t - OrExp(ExpS2.t,ExpS3.t);)
(Exp IMPLIES Exp prec IMPLIES)

{Exp~l.t - ImpliesExp(Exp2.t,Exp3.t);)
(Exp 1FF Exp prec 1FF) (Exp$l.t - IffExp(Exp$2.t,ExpS3.t);i

i (Exp <'Exp prec LE) (Exp$l.t = LessThan(ExpS2.t,Exp$3.t);)

(Exp > Exp prec LE) JExp$I.t - GreaterThan(ExpS2.tExp$-l.t,);i
(Exp ' Exp prec '=') (Exp~l.t - Equal (Exp2.t,Exp$3.t);h

(Exp LE Exp prec LE) {Exp~l.t -LessEqrual(ExpS2.t,ExpS3.t);,

(E-xp GE Exp prec LE) (Exp~l.t - GreaterEqual(ExpS2.t,Exp$S.Jh)
(Exp NE Exp prec LE) iExp~l.t =NotEcqual(Exp$2.t,ExpS3.t);)

j Exp NLT Exp prec LE) (Exp~l.t = NotLessThan(ExpS2.t,ExpS3.t);

(Exp NGT Exp prec LE)

JExp$2.t = NotGreaterThan(Exp$2.t,Exp$3.t);)
(Exp NLE Exp prec LE) {Exp~l.t = NotLessEqual(Exp2.t,Exp$-i.t);'

(Exp NGE Exp prec LE)

(Exp~l.t = NotGreaterEqual(Exp$2.t,ExpS3.t);)
(Exp EQV Exp prec LE) (Exp~l.t - Equivalent (Exp$2.t,Exp$3-.t);)
(Exp NEQV Exp prec LE) (Exp~l.t - NotEquivalent(ExpS2.t,Exp$-l.t);

(UM:NUS Exp prec UMINUS) iExp~l.t = UnaryMlnus(Exp$2.t);h

(Exp ' Exp prec PLUS) fExp~l.t - Add(Exp$2.t,ExpS3.t);!

(Exp ''Exp prec MINUS) (Exp~l.t - Subtract (ExpS2.t,Exp$3.t);

(Exp ' Exp prec MUL) (Exp~l.t = Multiply(ExpS2.t,ExpS3.t);!
(Exp ''Exp prec DIV) (ExpSl.t -Divide(ExpS2.t,Exp$3.-,);

(Exp MOO Exp prec MOD) fExp$i.t - ModExp(ExpS2.t,ExpS1.Z);.

(Exp ZXT' Fxv prec EXP) (ExpSI.t - Exponent(ExpS2.L,Exp3.2;

()Exp U Exp prec U) (Exp$l.t - UExp(Exp2.t,Exp$3.:,);i
(Exp A:PPEND- Exp prec APPEND) {Exp~l.t - AppendExp(Exp2.t,ExS.t);h

(Exp IN Exp prec IN) (Exp$l.t - InExp(Exp$2.t,ExpS3.*t);1
("' Exp prec STAR) (Exp~l.t -ExpS2.t;}

('S' E-xp prec DOT) {ExpSl.t - CollectExp(ExpS2.t);}
(:Exp RANGE Exp prec RANGE) lExp$l.t - RangeExp(ExpS2.t,Exp$".t-)'h

(Exp . Ident prec DOT) (Exp~l.t - DotExp(ExpS2.t,Ident.t);!

(Exp 'VExp '3' prec DOT) (Exp~l.t - SqBracketExp(Exp2.t,Exp3.t-);I
C'Exp ')') (Exp~l.t - Parensxp(ExpS2.t);}

'UExp Ident ')) Exp$l.t - MeasureExp(ExpS2.t,Idert..);)

(T:M-v) )S$.t = TimeExpo;)
(DELAY) ($.= DelayExpo;)

(PERIOD) )SS.t - PeriodExpo;)

(Literal) (Exp.t - Constant (Literal.tl;1
(Literal '@' ActualName)

(Exp.t =LiteralType(Literal.t,ActualName.t);)

U') {S.t =IllegalExpo;j

I (IF Exp THEN Exp MiddleCases ELSE Exp FI)

(Exp$I'.t -Iflhen(Exp$2.tExpS3.t,MiddleCases.t,ExpS4.t);I
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Miid~ases() )S.t = M~dcaseNilU);)

I (MiddleCases EL.SE_ IF Exp THEN Exp)

(Niddle_-asesS:.t = MidCase (middleCases$2.t.Exp$1.t,ExpS2.t);i

'2,,an i f:er, (ALL) )SS.t = A-II);)

I (SOME) (S$.t = Some));)

(NU;MBER) 1$$.t = NumberoC;)

(S UM) iSS.t = Sum(O;l

* (PRODUCT) ($$.t - ProductoC;)

(SE'r) {SS.t - Setol;)

I (M.AXIMUM) ($$.t - Maximium();)

I (MINIMUM) ($$.t - Minimumfl;)

I (UNION) ($$.t - Union 0;)
(INTERSECTION) 1S$.t - Intersectiono;)

Restriction. 0: . ($$.t - RestriciNil();)

(SUCH Exp) (Restriction.t - SuchThat (Exp.t);)

Litera1 (1ntegerLit) (Litera2.t - IntLiteral(IntegerLit.t);)

(RealLit) (Literal.t -RealLiteral(RealLit.t);)

(CharLit) (Literal.t - CharLiteral (C)harLit~t);)
I (StrinqLit) {Literai .t = StriJngLiteral (Strinqg4t .t);

('Idernt) IL'teral.z = Enuineration(ldent.t);)

Expressio-s '3') (Literal.t = Sequence(Expressions.t);)

(''Expressions 'j') (Literal.t = Set~literal(Expressions.t);j

('Express~cns ';' Exp ')')
JLiteral.t = MapL-iteral (Expressions.t,Exp.t);)

C''Pa.,: ' f Literal.t = OneOfLiteral(Pair.t);)

xpressionrs C)EpesonsNilf);)

(ExpList.) f ,pressiors.t = ExpressionsList (ExpLis..t);

air:r.s: (Pa'r) (PairList .t -SinglePair (Pair.t);

)Par~it '' a±z) (PairListSl.t - Mu~ltiPair(PairListS2.t,Pai-r.t);I

P.r(\a-e-*s- 3:ND ExO) (Pair.t = PairBind(NameList.t,Exp.t);i

rlnteqer_~~ IntConstant(INEGE_L::);3

ReaLL ~ (AL:>Rea'L~t.t =ReaIConstart(R.EAL LI>T;)

{Crarjit . t = CharConstant (CHARIT);

St~~L ~:'z U>iStr'ngLit.: StringConstant)(STR:NGO :7

Zaer,~~~~ ;,et I dent.ifier(DTEN7FlER);l
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E. UNPARSING SCHEMES

The Mie unparse.ssl contains the unparsing declarations for the display represen-

tation of the constructs for the SPECDEF editor.

I" F'e UNPA.RSE-.SSL "

This file contains the unparsing rules for the SPECOEF editor. "

/* Unparsing Scheme '
start Spec @ @

Spec ModuleNil @

ModulePair @ 8 "%ntn"] @

...dule De!Mod,.ieDecl I 8 "DEFINITION @ "%n"

"END"'

:r-:erface :nterfface-ecl @ "%t" @ 8 @ %on

:ne Prorrpt "<inherit>"
:nheristmt@ "%n"INHERIT @ "%t" @ @"%b"

nLOS2 Hi deNi rA:1
Hide~rom-pt -, ="<hide>" I

Hldezist I "%n.""HIDE @

reranes Renar~.eNil A:

RenaneProrpt I ="<rename)"

RenarreStrtn= "%n"RENA±C1 @ n AS @

:= "impot)"

U-prtinz@ "%n""Th PORT "f 8 " ?OM @

exrctEc ti

Expcrtrr-pt"<export>"
Exz:tL~t ="%n.""EXPORT @

wnere Wteerpzy

Wt e reP no.r pt "<where>"j
Nnere7txp "WHERE " @

concepts CcnzeptNil @
CcnceptPair 8 8@

ccncepr Corrept'op 8 ="<concept>"

Concepr-ype 3 "%ttn""CONCEPT @ " @ "%t,%n"

@ "%b%btn"]
ConceptValue = %t%r "CONCEPT "8@""@" @ "%t%n"f

'VALUE " @ "%n" 8 "%bibin"1

!crmral na-e Fom@m
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f orma 1pa ram!ete rs Forma'ParmEmpzy
* FormalParm~ronpt I <forralparm>"

FormalParrmList =" 6}"6

formal arguments EorralArgEmpty
Forma!A rgPrompt :="<formal _args>"

* FormalArgList @C )

field-list FieldListComp [ -"field>"
I SingleField @ I
I MultiField ( :: -

field UndefField [
FieldNamneList [@

I FieldCollection @ $ 6

type spec UndefType I~ -""
NamedType @

..ame list Nameldent ::@

NamePair @ @=6"

act -a ai: ae A ct ual P armLi st @ @

ta c;'pa ram-ters ActParmEmpty I
ActParm.Prcrct I ="<actual_parm>"

ListOfArgs @{ 1

a~alr9~eZ s ActualArgNil

ActualArgProlpt ="<actual-arg>"

ActualArg--ist @ C )

arg_ :1st ArgListEmrpty ="<arg>"

SingleArg @ )

MultiArg 6 ",-

arg ArgComp[ "<arg>"
Ar-xp

Arq~air @

expressZ7_ _S Em-pyZxplJ.st ="<expression list>"
Sin'eExp [ @

expressio7 ',-ndefExp :=
Qjamtif:,erExp @: @%"6""6"o %%~ )2
:aenttxp @= @

AtExp :-6"6" @ 6@

NotExp I -"-
AndExp I : "{ "Uto @ - 6 1]1W I

I OrExp @-%{ "%[%o I @ ])

lmplie Exp @%{ "%[%o >"6"])

IffExp @= "i"6%[%o <.> @ %J}
I LessTha. @ "% %Io < .%]%}"I

GreaterThan @ %1 '%o > @ %])

Equal @ % "?&[to @ %))
LessEqua* @ :="%" kipo I- @ 6 "]% I
Great~er~q IW "%" "FlIlo I @ "%))" 3
NotEqual I= %(" 6 "'%o I @ I~%)

NotLessThan I%{" 6 "%[to I< @ lilt]%" I
Nctrea~rTd."%(" 6 @%% >"6"]I
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I NotLessEqual "%@ "%[to-( 9 % r
I NotGreaterEqual.[ : "%(" @ "%[to @9"]}

I Equivalent [ ' ," %(to @ .41%). 1

I NotEquivalent @: %{ "%[to @ "%)"

I uz0a7yminus [I -

I Add+@

Subtract@

multiply@
I Divide@
I ModExp
I Exponent [:-9"

I UEXP I:-"{ "%[to U @ " %]%I,

AppendExp [": %"9~%o 11 @ .%]%).

1nExp [*: %( %[to IN @ It"]%)"
Star :: 9

I CollectExp r:: S91

I RangeExp @: .

I DotExp

I SqBracketExp I:-9" 1
* ParenExp I- : ( )

MeasureExp @ @( )

TimeExp "T IME"3

DelayExp I DELAY"

* PericdExp "PERIOD"

* Constant@I

I LiteralType @ @9

I IllegalExp I "!"3

Iflhen I "%{-"IF @ "%t%o%b THEN @ "%t%otb"

@ "%t%o%b ELSE " @ " Fit)"

middle-cases MidCaseNil
MiddlePrortpt "<middle -cases>"

MidCase ::"%(" @ "to ELSE IF' 'to THEN" @%

quantifier QuantifierComp "<quantifier>"

A2 I "ALL"

Some "SOME"3

N* .Nrr e r "NUNSER"
S,;7-"SUM" I

Produ.Ct "PRODUCT"I

Set i "SET"I
mx:rtu;r "MAXIM4UM"3

M - , aT-. 7,"MINIMUM"

Unlo7 "UNION"

:rntersectlon "INTERSECTION" J

restr-c~in Rest-riitCco'p :.I "<restriction>"

RestrictNii :. I

* SuchThat I:-"SUCH TH4AT 9

-tera. EmptyLiteral :z~- "<literal>"'

I :ntLiteral @- I

I RealLiteral @ - 9

I CharLiteral :-93

I StringLircral I 9

1 Enumeration @ 9
I Sequence""9""

I Set.Literal""9""
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MapLiteral @ @U U

1 TupeLiterai @"~*~

OneOfLiteral @I U

expressions ExpressionsComp I "<expressions>"

I ExpressionsNil I
I ExpressionsList @

pair_ List PairListConp [ "<pair-list>.

i Singlepair ]
MultiP a ir @

pair PairBind [@

integer Lit IntConstant "I

real-_lit RealConstant

char li;t CharConstant [

strin_ litStringConstant 3

ident:!ier Identifier
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APPENDIX C

L USER'S MANUAL FOR THE SPECDEF EDITOR

The SPECrOEF editor is a syntax directed editor for writing Spec specification

language definition modules. A syntax directed editor, also known as a language-based

editor, is one in which the programs and systems are created and modified according to

the syntactic structure of the language. The programs are represented internally as

abstract syntax trees, or parse trees, that are built by the editor through constructive

commands entered by the user.

The "programs" that are manipulated in the SPECDEF editor are actually specifi-

cations, not compilable programs. However, the Spec language has a very well-defined

syntactic structure, just like most programming languages, so a syntax directed editor

works just as well for Spec as it does for any structured programming language.

The SPECDEF editor uses the principle of immediate computation to analyze the

syntactic correctness of the abstract syntax tree as it is being constructed. This means

that as the user enters each additional component to the parse tree, or modifies an existing

component, the entire tree is re-analyzed to see if the addition or modification maintains

a correct syntactic structure. If it does not, the user is immediately signalled that a syntax

error has occurred, which must be corrected before the editor will allow the user to add

any more components. In this way, the editor ensures that only syntactically correct (i.e.,
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error-free) specifications are written. This is the key feature of any syntax directed

editor.

This editor was created using the Synthesizer Generator, a CASE tool for generating

syntax directed editors from an editor specification file containing the grammar rules (the

abstract syntax), the display representation (known as the unparsing scheme), and the

concrete input syntax rules of the language for which the editor is designed, in this case

Spec.

A. STANDARD FEATURES

Each editor specification results in an edito,° with distinct characteristics that are

language-dependent. However, there is a generic user interface common to all editors

created by the Synthesizer Generator. A few of the interface features have minor

differences dependent on the windowing system for which the editor is targeted. These

differences are indicated where applicable.

Throughout this user's manual, editor system commands are written in boldface.

Many of these commands have one or more key-bindings, which are indicated by the text

between angle brackets (e.g., < Al or ESC-x >). These are keys on the keyboard that will

invoke the commands. The symbol A refers to the CTRL key, which must be held down

while depressing the key indicated immediately following the ^ symbol. For example,

AC means "hold down the CTRL key and depress the C key".

The display screen of the editor will normally have some portion of the displayed text

highlighted in reverse-video. In the diagrams that follow, characters that would appear in

reverse-video on the actual display are written in boldface.
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1. Invoking and Exiting the Editor

The editor is invoked by typing the name SPECDEF (or SPECDEFSUN for the

Sun workstation version of the editor) at the operating system prompt with an optional

list of arguments consisting of one or more filenames of fies to be loaded into the editing

buffers. Note that the editor name must Ix. typed in all capital letters. Invoking the editor

with no arguments causes editing to begin in the default buffer main with no associated

fMle. [Ref. 11: p. 90]

To terminate an editing session, leave the editor and return to the operating

system, the exit command < AC, ESC-AC, or AXAC > is executed. [Ref. 11: p. 91]

2. Display Screen

The editor's display screen is divided into four horizontal stripes, or regions.

labelled from top to bottom, the title bar, the command line, the object pane, and the help

pane, as shown in Figure 22. The title bar is always highlighted and contains the name of

the current buffer displayed in the object pane. The command line echos commands and

error messages. The object pane displays all or a fragment of the current buffer's

contents. The help pane, which takes up the last few lines of the display window, lists

the currently selected constituent, or node in the parse tree, plus the currently enabled

template transformations, if any. [Ref. 10: p. 21; 11: p. 91]

It should be noted that the horizontal lines separating the panes in all the diagrams

of this user's manual are for explanation purposes only. They do not appear on the actual

video display terminal. The entire title bar, however, is always highlighted.
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Title Bar

Command Line

Object Pane

Help Pane

Figure 22
Display screen regions

On the Sun workstation version of the editor, the window will also have two

scroll bars for use with the mouse: one to the right of the object pane and one below the

object pane. These scroll bars control which portion of the buffer is visible in the object

pane. [Ref. 11: p. 911

3. Current Selection vs. Locator

SPECDEF is a screen-oriented hybrid structure editor, since it permits editing the

structure of the displayed object through template insertions as well as allowing

character- and line-oriented operations on the text. A template of a component consists

of a pattern of keywords and placeholders where additional components can be inserted.

A Spec specification is created top down by invoking template transformations that insert

new components within the framework of previously entered templates. These template

transformations are the constructive commands that actually build the abstract syntax

tree. [Ref. 10: pp. 21,26]
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The current selection indicates the individual component of the specification at

which the editor is positioned. This is indicated on the screen display by highlighting all

components contained within the template of the current selection. The help pane also

tells the user which component is currently selected by displaying the message

"Positioned at <component>", where <component> is the phylum name of the

current selection. (A phylum can be thought of as a node in the abstract syntax tree.)

[Ref. 10: p. 21]

A character selection is displayed during text editing, indicating the specific

character position within the highlighted selection where the next character can be

entered. On standard video display terminals, this position is denoted by an unhigh-

lighted character within the highlighted selection; on Sun workstations, the character

selection is indicated by an I-beam symbol within the highlighted selection. [Ref. 10: pp.

22,261

The locator can be used to change the current selection and the character

selection. On standard video display terminals, the locator is the terminal's cursor,

generally denoted by a blinking underbar or a blinking solid box. The locator can be

moved with the commands pointer-up < ESC-p >, pointer-down < ESC-d >, pointer-

left < ESC-b >, and pointer-right < ESC-f >. Even after the locator is moved to a new

component, the new selection is not made until the select command < ESC-@ > is

executed.
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CAUTION: The locator does not automatically move to the new selection if the
user changes selection by executing the forward-with-optionals command < AM
or RETURN >. This can be very confusing to the user, since the cursor position
will not correspond to the actual position in the parse tree structure of the object
being edited.

On Sun workstations, the locator is denoted by an arrow. The locator's position is

changed by moving the mouse, and the select command is executed by clicking the

mouse's selection button (the left button). [Ref. 10: pp. 22,300]

B. TEXT ENTRY

Selections are displayed according to the unparsing schemes, or display templates,

declared in the editor specification. Each production in the grammar has its own

template. The template for each selection is either editable as text or it is immutable.

Note that a selection declared as immutable may have elements within its template that

are not immutable. The selection must be moved to the editable part before text entry is

permitted. [Ref. 10: pp. 22-23]

If the current selection is not editable as text, any attempt to type a character is

rejected by the editor, sounds a warning signal, and displays the message "text entry not

permitted here" on the command line, as shown in Figure 23. The selection must be

changed to an editable component by either repositioning the locator and executing the

select command < ESC-@ >, or by executing one of the other structural selection by

traversal commands, such as forward-preorder < AN >, backward-preorder < Ap >,

forward-with-optionals < AM or RETURN >, forward-slbling < ESC-A N >, forward-

sibling-with-optionals < ESC-AM >, etc. (See Chapter 3 of [Ref. 11] for other

structural selection by traversal commands.) [Ref. 10: pp. 22-24; 11: pp. 101-102]
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Current buffer: main

text entry not permitted here

DEFINITION

END

Positioned at spec

Figure 23
Example of illegal attempt to enter text

When the current selection is editable, the entered text is captured into the text buffer,

which is displayed in its proper position in the object pane. During editing, the selection

does not exist as structure, but instead exists as text. Operations within the selection are

defined on individual characters rather than on the structure. The text entry is terminated

by executing forward-with-optionals < AM or RETURN >, at which time syntactic

correctness is checked. [Ref. 10: p. 26]

If a syntax error is detected, a warning signal sounds, the message "syntax error"

appears on the command line, and the character selection is positioned at the last

character of the leftmost error that was detected. For example, in Figure 24, an attempt

was made to enter (p : passenger) as a formal argument to concept waiting, but the left

and right parentheses were not entered, resulting in a syntax error. [Ref. 10: p. 27]
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Current buffer: main

syntax error

DEFINITION waiting_passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting p : passenger

END

Positioned at formalarguments empty fieldlist

Figure 24
Example of a syntax error

To correct a syntax error, the user can either delete the entire text buffer by executing

the command delete-selection < AK > and then entering the correct text, or the text

buffer itself can be edited with any of a variety of commands described below. There

will be one character highlighted within the text buffer. This character selection can be

moved with the commands right < AF >, left < AB >, beginning-of-line < AA >, or end-

of-line < ^E >. Once the character selection is at the desired position, the user can either

type additional characters to be inserted, or delete unwanted characters. Deletion

commands are delete-next-character < AD > (which actually deletes the currently

highlighted character), delete-previous-character < DEL > (which deletes the character

to the left of the cursor), erase-to-end-of-line < ESC-d >, or erase-to-beginning-of-line

< ESO-DEL >. [Ref. 11: pp. 103-104,109]
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C. TEMPLATE INSERTION

When a new selection is made, the help pane is updated to indicate which component

is selected and any template transformations that are enabled. The template names listed

are actually commands used to invoke the respective transformations. [Ref. 10: p. 23]

Templates may be selected in three ways, dependent on which type of terminal is

being used. On standard video display terminals, the user must escape to the command

line by invoking the execute-command command < A1, TAB, or ESC-x >, and then

typing a sufficient number of characters of the desired template name to make the choice

unambiguous. If the prefix is ambiguous because an insufficient number of characters

are typed, the message "<prefix> is ambiguous" appears on the command line, where

<prefix> is the string that the user entered, as shown in Figures 25 and 26. On Sun

workstations or other mouse-equipped workstations, transformations can be invoked by

clicking on the transformation-name in the help pane, or by choosing from a pop-up

menu of choices with the mouse's structure-menu button (the right button). [Ref. 10: p.

23; 11: p. 147]

In the SPECDEF editor, it is recommended to expand the size of the help pane by two

lines to be able to view all the possible transformations available for the phylum

expression. This is accomplished by executing the enlarge-help < ESC-^Xz >

command twice (once for each line of expansion). The default size of the help pane is

four lines, but phylum expression requires six lines, as shown in Figures 25 and 26.

[Ref. 11: p. 981
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Current buffer: main

COMMAND: if

DEFINITION wating-passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : boolean)
WHERE ALL(p : passenger, f : floor ?)

<concept>
END

Positioned at expression quantity actname @ ~ &
implies iff < > <= >=

~ -> ->== uminus
+ " / mod U append
in_exp star collect range dot [] parens measure
time delay period constant littype illegal ifthen

Figure 25
Ambiguous template transformation selection

Current buffer : main

if is ambiguous

DEFINITION waitingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p :passenger)
VALUE (b : boolean)
WHERE ALL(p : passenger, f floor ?)

<concept>
END

Positioned at expression quantify actname @ &
implies ff < > -< >=

~= -< -> ->= = M uminus
+ " / mod U append
in exp star collect range dot 0 parens measure
time delay period constant Itype Illegal Kthen

Figure 26

Result of ambiguous transformation selection
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Some selections do not have any associated template transformations. This is

reflected in the help pane by listing only the current constituent. If an attempt is made to

initiate a template insertion when no transformations are enabled, or an attempt is made

to select a transformation other than those enabled, as in Figure 27, the editor will sound

a warning signal, display the message "<template-name> is unknown command",

where <template-name> is the character string typed by the user, and a help buffer will

be displayed listing all the system commands and their associated key-bindings available

at that location, as in Figure 28. The help buffer can be removed from the screen with the

delete-other-window command < ^Xl >. [Ref. 10: p. 25]

Current buffer : main

COMMAND: foraUl

DEFINITION waitingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : boolean )
WHERE <quantifier>(<field><restriction> ::?)

<concept>
END

Positioned a, quantifier all some number sum product
set max mn union intersect

Figure 27
Attempt to initiate non-available transformation

The forward-with-optionals command < AM or RETURN > advances the selection

forward to the next component in preorder when executed alone, including stopping at

an-, optional placeholdcr inserted by the editor, such as in a list. However, when entering
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text or invoking a template transformation, the forward-with-optionals command

behaves differently. When a transformation is invoked, the selection moves to the first

placeholder (excluding optionals) in the transformed .component. If no such placeholder

exists, then the selection remains at the same position where the transformation was

invoked. In such instances, it appears to the user that the forward-with-optionals

command must be executed twice to advance to the next selection. [Ref. 10: pp. 37-38]

Current buffer: main

forall is unknown command

DEFINITION wafting-passenger
INHERIT elevator
INHERIT passenger

Positoned al quantifier all some number sum product
set max mrin union intersect

Current buffer : Help

advance-after-transform (none)
advance-after-parse (none)
apropos <ESC ?>
ascend-to-parent <ESC \>
backward-preorder <^P>
backward-sibling <ESC ^P>.
backward-sblng-wit h-optlonals <ESC AB>
backward-with-optionals <^H>
beginning-of-file <ESC <>
beginning-of-line -^A>

Figure 28
Unknown Command message and Help buffer
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D. SAVING AN EDITING SESSION

Edited objects are contained in a named buffer, such as the main buffer. To save the

object being edited, the buffer contents must be written to a file. The command used to

write such a file depends on whether the object was created directly during the current

editing session, or if it was a previously existing file loaded into the buffer as an

argument file when the editor was invoked, or was loaded with the command read-file

file-name < ^X^F or AXAR >. [Ref. 11: 95-97]

There are two file formats in which an object may be saved: text or structure. A text

file contains the display representation of the object as it would be viewed in the object

pane. A structure file contains the internal representation of the edited object. [Ref. 11:

p. 95]

An object that was saved as a structure file can be read back into the editor for re-

editing. The unparsing schemes that were in effect at the time the file was written are

restored, since they are saved as part of the file in these formats. A text file, however,

can only be read into the editor if it can be reparsed, because the unparsing schemes in

effect at the time the file was written are not saved as part of the file. If the text file

contains syntactic errors, the file is read into the text buffer and the character selection is

positioned near the error. This would occur in the case where the user saved a file

immediately after attempting a syntactically incorrect text entry but before correcting the

error. [Ref. 11: p. 96]

When a previously existing file is read into a buffer, the format of the file becomes

associated with the buffer for subsequent write-current-file commands < AXS >. This
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command writes the current modified contents of the buffer back to the same file using

the same format as when the file was read into the buffer. [Ref. 11: p. 971

If the edited object was created during the current editing session, or if the user

desires to save a previously existing file in a different format, execute the command

write-named-ile file-name format < AXAW >. The default format is structure. A pop-

up window appears at the bottom of the display screen. This window contains parameter

fields for the user to enter the filename of the file to save the buffer contents into, and the

format in which to save it. When the user wants to save his work for later re-editing, the

structure format should be selected. If the user wants to print the contents of the buffer,

the file should be saved as a text file, which can then be printed as any regular text file.

An example of this pop-up window is shown in Figures 29 and 30. Once the parameters

are selected, the command start-command < ESC-s > must be executed to actually

write the contents to the file. When the editor is done writing the file, the message

"Wrote <filename>" is displayed on the command line, where <filename> is the name

of the file being written, and the parameters window disappears. [Ref. 11: pp. 93,97]
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Current buffer: main

DEFINITION wafting-passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p: passenger)
VALUE (b :boolean )
WHERE ALL(dfield> <restriction> :?)

<concept>
END

--- Current Form :Write FileForm --------------------------------------------

JWRITE FILE: cfile-name . FILE FORMAT: structure

Positioned at _file-name

Figure 29
Pop-up write-namned-file parameter window

Cu~rrent buffer :main

DEFINITION wait ing-passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p : passenger)
VALUE (b : boolean)
WHERE ALL(<field><restriction> ?)

<concept>
END

---Current Form: Write File Form ------------- ------- --------------------------

ICOMMAND: text
IWRITE FILE: passdef.spec FILE FORMAT: structure
jPositioned at _file-type text structure

Figure 30
Specifying text format for Write File Form
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E. EDITOR SYSTEM COMMANDS

Many of the editor system commands are similar or identical to EMACS text editor

command names and standard key-bindings [Ref. 11: p. 90]. The more commonly used

commands have been described in the preceeding sections and are summarized below.

There are numerous other less commonly used commands. Appendix D contains a

complete hs: of the availab& editor commands. For a full description of each command,

the reader is referred to Chapter 3 o The Synthesizer Generator Reference Manual [Ref.

I1].

1. Executing Commands and Transformations

Every editor command has a name and zero or more key-bindings. There are four

ways to invoke a command. First, the keystrokes bound to the command may be typed.

Second, the command may be selected from a menu. Third, the command name may be

typed on the command line of a window. And lastly, on mouse-equipped systems only, a

mouse click may select an actuator bound to the command. All keystrokes other than the

command key-bindings or escaped text entered on the command line are interpreted as

textual insertions into the object being edited. [Ref. 11: p. 91]

The following commands are used to execute transformations or to get out of the

editor:

* exit < AC, ESC-AC, AXAC >: Leave the editor and return to the shell. If any
buffers have been modified since their associated files were last written out, a
warning is issued in a pop-up window. To abort the exit, execute as cancel-
command < ESC-c >. To continue with the exit command, execute a start-
command < ESC-s >.
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" execute-command name < Al, ESC-x >: Initiates the command mode and
redirects subsequent characters to the command line following the prompt
COMMAND:. Entry on the command line is terminated by the first blank,
carriage return, or other command key-binding. The command name need not be
typed in its entirety'; any prefix of a command that uniquely identifies the
command is sufficient. Transformations take priority over built-in commands. If
the command has no parameters, it is executed immediately. Otherwise, a pop-
up window f3r parameters appears; after the parameters have been provided, the
command should be initiated by executing start-command. If a command
parameter is either invalid or ambiguous, an error message is issued. Note that
the control character 'I is TAB.

* start-command < ESC-s >: Initiate execution of a command with the
parameters contained in the current pop-up parameter form window. If not
currently editing a parameter form, start-command does nothing.

2. Buffers, Selections, and Files

Objects that are being manipulated in the editor are contained in a collection of

named buffers. Each file being edited is typically read into a distinct buffer. The buffer

is then associated with the given file until either a different file is read into that buffer, or

the given buffer is written out to a different file. [Ref. 11: p. 95]

Two file formats are supported: text and structure. Text files contain the display

representation of a term. Structure files contain an internal representation of a term. A

term is a derivation tree of the object being manipulated. [Ref. 11: p. 95]

Terms written as structure files can be read back into the editor with the identical

structure as when the file was saved. Text files, however, can only be read back into the

editor if the text can be reparsed because the unparsing schemes in effect at the time the

file was written are not saved within the file. [Ref. 11: p. 96]
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The following commands are used to read or write files:

" read-rile file-name < ^XAF, AXAR >: Reads the named file into the current
buffer, deleting the previous contents of that buffer. The buffer becomes
associated with that file for subsequent write-current-irde commands. If the
current buffer is already associated with a file that has not been written since the
buffer was last updated, you must answer yes to the question Overwrite buffer?
before the read will be executed. If the given file is text, it must be syntactically
correct with respect to the input syntax of the given editor. If syntactically
incorrect, the file is read into the text buffer with the cursor positioned near the
error. If the given file is a structured file, the term contained in the file and the
term currently contained in the buffer must be in the same phylum.

" write-current-file < ^Xs >: Write the value of the buffer displayed in the
current window to its associated file in the current format associated with the
buffer.

" write-named-file file-name format < ^X^W >: Write the value of the buffer
displayed in the current window to the given file in the given format. The
default format--structure--can be changed by selecting the format field of the
pop-up parameter window and invoking the text transformation.

3. Creating, Deleting, and Resizing Windows and Panes

In editors generated for standard video display terminals, windows are non-

overlapping, are arranged in horizontal stripes across the screen, and are cyclicly ordered

from top to bottom for the purpose of the next-window and previous-window

commands. [Ref. 11: p. 97]

In editors generated for workstations with high-resolution, bitmapped displays

(e.g., Sun workstations), resizable and overlapping windows with scroll bars are

supported. [Ref. 11: p. 98]

The following commands manipulate the windows and display:

" delete-other-windows < 1X1 >: Delete all windows other than the current one.

" next-window < ^Xn >: Switch to the next window on the screen. (Video
display terminals only.)
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" previous-window < AXp >: Switch to the previous window on the screen.
(Video display terminals only.)

" enlarge-help < ESC-AXz >: Increase the size of the help pane of the current
window by one line.

" redraw-display < AL >: Refresh the screen image to remove any spurious
characters.

4. Changing the Structural Selection by Traversal of the Edited Term

The current selection can be changed by moving through the structure of the

abstract-syntax tree (e.g., in preorder, reverse preorder, by moving to the parent, etc.). If

such a motion would cause the selection to leave the currently displayed text in the

window, the object is scrolled automatically to keep the new selection within the

window. [Ref. 11: p. 101]

Some commands cause the editor to automatically insert instances of optional

components into the abstract syntax tree (e.g., forward-with-optionals < AM or

RETURN >). The placeholder for an optional element becomes the current selection. If

the selection is advanced beyond an inserted optional element, and that optional element

is still only a placeholder, that placeholder is removed from the abstract syntax tree (and

consequently from the display). Other commands that change the selection ignore any

optional components and therefore do not insert an instance of such elements in the

abstract syntax tree. [Ref. 11: p. 101]

The following commands are used to move the selection:

* forward-preorder < AN >: Change the selection to the next resting place in a
forward preorder traversal of the abstract-syntax tree. Do not stop at place-
holders for optional constituents.
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" backward-preorder < ^P >: Change the selection to the previous resting place
in a forward preorder traversal of the abstract-syntax tree. Do not stop at
placeholders for optional constituents.

* right < AF >: If there is no text buffer, right is the same as forward-preorder.
See Section I.E.5 for the meaning of right when there is a text buffer.

" left < AB >: If there is no text buffer, left is the same as backward-preorder.
See Section I.E.5 for the meaning of left when there is a text buffer.

* forward-with-optionals < AM>: Change the selection to the next resting place
in a forward preorder traversal of the abstract-syntax tree. Stop at placeholders
for optional constituents. Note the AM is RETURN.

* end-of-file < ESC-> >: Change the selection to the rightmost resting place in
the abstract syntax tree.

5. Changing the Character Selection by Traversal of the Text Buffer

The text buffer contains text being entered or re-edited. This buffer is displayed

in its proper position within its enclosing structural context. One character within the

text buffer is selected, shown by a highlight. This character selection can be moved

within the text buffer by normal horizontal and vertical "cursor-motion" commands. If

the character selection is moved beyond the boundaries of the text buffer, the contents of

the text buffer are submitted for syntactic analysis and translation. Within the text buffer,

the structural-motion commands forward-preorder, backward-preorder, right, and

left, which were previously defined for moving the component selection, have been

overloaded and are also used to move the character selection down, up, right, and left,

respectively. [Ref. 11: p. 103]
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The following commands are used to change the character selection within the

text buffer:

* forward-preorder < AN >: Move the character selection one position down. If
already at the last line of the text buffer, this command is interpreted as forward-
after-parse.

" backward-preorder < ^P >: Move the character selection one position up. If
already at the first line of the text buffer, this command is interpreted as
backward.preorder, as described in Section I.E.4, provided the text is
syntactically correct.

" right < 'F >: Move the character selection one position to the right. If already
at the rightmost character of a line, the character selection advances to the first
character of the next line of the text buffer. If already at the rightmost character
of the last line of the text buffer, the command is interpreted as forward-after-
parse.

" left < ̂ 1 >: Move the character selection one position to the left. If already at
the leftmost character of a line, the character selection advances to the last
character of the previous line of the text buffer. If already at the leftmost
character of the first line of the text buffer, the command is interpreted as
backward-preorder.

* beginning-of-line < ^A > Move the character selection to the beginning of the

line.

" end-of-line < ̂ E >: Move the character selection to the end of the line.

" forward-after-parse (no key-binding): If textual entry is terminated by
forward-preorder, then upon successful analysis the forward.preorder
command is replaced by forward-after-parse. Let t be the subterm or sublist
that has replaced the selection as a result of textual input. If no existing place-
holder occurs within t, then forward-after-parse stops at the first resting place
beyond t. Forward-after-parse never inserts optional placeholders either in t or
beyond t.

6. Moving the Locator on the Screen

The commands described in this section apply only to editors generated for

standard video display terminals (for editors generated for workstations equipped with a

mouse, the mouse can be used to point anywhere in the object pane, and clicking the
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mouse will change the current selection). It is important to note that the locator is

distinct from the selection. The locator identifies a point on the screen and not a point in

the buffer (i.e., the locator does not necessarily agree with the selection in the parse tree).

[Ref. 11: p. 105]

The following commands move the locator (i.e., the cursor):

" pointer-left < ESC-b >: Move the locator one character to the left. If already
in column one of the object pane and not already at the leftmost scroll position,
scroll the window.

* pointer-right < ESC-f >: Move the locator one character to the right. If
already at the right border of the object pane, scroll the window.

" pointer-up < ESC-p >: Move the locator one character up. If already at the top
of the object pane and not already at the uppermost scroll position, scroll the
window.

" pointer-down < ESC-d >: Move the locator one character down. If already at

the bottom of the object pane, scroll the window.

7. Structural Editing

Structural modifications follow a cut-and-paste paradigm, similar to block-edit

functions found in many text editors. Only whole, well-formed substructures can be

removed and inserted. [Ref. 11: p. 108]

The following commands are used to move, copy, or delete entire subtrees of the

overall abstract syntax tree:

" cut-to-clipped < "W >: Move the selection of the current buffer to the distin-
guished buffer CLIPPED. The removed selection is replaced by a placeholder,
which becomes the new selection. The previous contents of CLIPPED are lost.

" copy-to-clipped < ESC-^W >: Copy the selection of the current buffer to buffer
CLIPPED. The previous contents of CLIPPED are lost.
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* paste-from-clipped < ^Y >: Move the contents of buffer CLIPPED into the
buffer at the current selection, which must be a placeholder. In CLIPPED, a
placeholder term replaces the previous contents.

* copy-from-clipped < ESC-"Y >: Copy the contents of buffer CLIPPED into
the buffer at the current selection, which necessarily must be a placeholder. The
contents of CLIPPED are left unchanged.

* copy-text-from-clipped < ESC-^T >: Copy the contents of buffer CLIPPED,
as text, into a text buffer at the current selection immediately preceding the
character selection. The contents of CLIPPED are left unchanged.

* delete-selection < AK >: Move the selection of the current buffer to the
distinguished buffer DELETED. The selection becomes a placeholder. The
previous contents of DELETED are lost.

8. Textual Editing

Textual insertion and textual re-editing are permitted for some components of the

language, as discussed in Section I.E.5 above.

If a textual insertion is permitted at a placeholder, you merely begin to type; this

causes the text of the placeholder to disappear and the keystrokes are echoe.. .a the text

buffer, which is displayed in place on the screen.

If textual re-editing of an existing structure is desired and is permitted, the

character selection is positioned at the desired place in the text buffer whereupon the user

can begin to either type or erase characters. If the current selection was established by

tree traversal, as described in Section I.E.4 above, then the textual-insertion point is in

front of the character at which the locator pointed when the select-start was executed.

[Ref. 11: p. 109]
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The following commands are used to edit text within the text buffer:

" delete-next-character < ^D >: Delete the current character selection. If the
character selection is at the end of a line in the text buffer (other than the last
line), then the current line and the next line are joined into one line.

" delete-previous-character < DEL >: Delete the character to the left of the
character selection. If the character selection is at the beginning of a line in the
te:(t buffer (other than the first line), then the current line and the previous line
are joined into one line.

* erase-to-end-of-line < ESC-d >: Erase from the character selection to the end
of the line, including the character selection.

" erase-to-beginning-of-line < ESC-DEL >: Erase from the beginning of the line
to the character selection, not including the character selection.

* delete-selection < ^K >: Delete the entire line.

F. SAMPLE EDITING SESSION

We present a sample editing session using the standard video display terminal version

of SPECDEF. We will create a small specification file, save it for later re-editing, recall

the file into the editor, modify it, and save it for printout.

Some terminology that is used throughout the remainder of this section needs to be

clarified:

" Recall that a phylum can be thought of as a node in the abstract syntax tree.

* A completing term is the default representation of a phylum. Completing terms
can be replaced through template transformations, if any are enabled. The
completing term for some phyla are user prompts, consisting of the phylum name
enclosed in angle brackets, e.g., <forma..parm>. Other phyla have template
patterns with keywords for the respective phylum.

* A placeholder term is also a default representation of a phylum. For non-
optional phyla, the placeholder term is identical to the completing term. But for
phyla that are declared as optional, the placeholder is usually a user prompt, as
described above, indicating where a transformation can be inserted if desired.
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In the diagrams that follow, recall that text that would appear as highlighted text on

an actual video display is printed in boldface.

We invoke the editor by typing SPECDEF at the Unix prompt with no arguments, as

we will be creating the specification in this editing session. The initial screen presented

to the user has a blank object pane, as shown in Figure 31. Note that the help pane

indicates the selection is positioned at phylum start.

Current buffer main

Positioned at start

Figure 31
Initial Display Screen

There are no template transformations enabled for phylum start, so we simply

advance the selection by executing forward-with-optionals < AM or RETURN >. After

depressing the RETURN key, we are presented with the display as shown in Figure 32.

Phylum spec is declared as an optional list phylum, since we may have zero or more

occurrences of this construct according to the Spec grammar. Therefore, what we see in

the display is the placeholder term for phylum spec, which happens to be the completing

term for phylum module, the first argument for phylum spec.
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Current buffer : main

DEFINITION

END

Positioned at spec

Figure 32
Advancing the selection to phylum spec

As we advance the selection by executing forward-with-optionals < AM or

RETURN > repeatedly to cycle through phyla module, interface, and formalname,

the only changes that occur to the display screen are the name of the current selection

listed in the help pane, and the disappearance of the highlighting of the keywords

DEFINITION and END as the selection reaches interface. The next selection is

identifier, at which point we decide to enter the name of our module,

waitingpassenger, as shown in Figure 33.

Current buffer : main

DEFINITION waiting_passenger

END

Positioned at identifier

Figure 33
Entering text at node identifier
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The text entry is terminated by entering a carriage return. This causes the entered text

to be checked for syntactic correctness; it is accepted and inserted in the abstract-syntax

tree at the node for phylum identifier. The selection is advanced to formal.parameters,

as shown in Figure 34.

Here we have the first occurrence of a completing term/placeholder term/user prompt,

the string <formal_parm>, to prompt the user that some acceptable form of formal

parameters should be entered here. We also have two template transformations enabled

named empty and fieldlist. In this case we do not want any formal parameters, so we

invoke the transformation empty by first executing execute-command < ^I or TAB >;

when \we depress the TAB key, the prompt COMMAND: appears on the command line.

We only need to enter enough letters of the transformation name to make our choice

unambiguous: in this case, simply typing e is sufficient to differentiate between empty

and fieldlist. After typing the e, the screen appears as in Figure 35.

Current buffer : main

DEFINITION waitingpasse nger<fo rmal_pa rm .

END

Positioned at formaLparameters empty fieldlist

Figure 34
Display after parsing the module name
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Current buffer: main

COMMAND: e

DEFINITION waiting.passenger<formalparm>

END

Positioned at formalparameters empty fieldlist

Figure 35
Invoking template transformation empty

Any of the several commands that move the selection will terminate the template

command. We use forward-with-optionals < AM or RETURN >. The template for an

empty formal_parameter list is executed, which replaces the placeholder term

<formaLparm> with a null.

The selection is advanced, and the optional phylum inherits is selected. Since this

phylum is optional, the completing term (a null statement) is replaced on the display with

the placeholder term, the string <inherit>. There are two INHERIT clauses we wish to

add, so we invoke execute-command twice, each time typing a for addinhent to display

the templates for two INHERIT clauses, as shown in Figure 36. Note that the selection is

still positioned at the <inherit> prompt on the first line, since the abstract-syntax rule for

inherits inserts an instance of inherits at the beginning of each clause until a null clause

is selected. To get rid of this prompt and advance to the first INHERIT clause, we must

invoke the transformation empty on the command line.
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Current buffer: main

DEFINITION wafting_passenger<Inhert>
INHERIT <hide><rename>
INHERIT <hide><rename>

END

Postion, d at inherits empty addinhedt

Figure 36
After invoking transformation addinherit twice

After invoking transformation empty, the selection is advanced to actualname.

We type in the name elevator, the name of the module we wish to inherit. Even though

we did not include any actual parameters after the actual name elevator, it is still

accepted, since actual parameters can be empty. Note that we could have advanced the

selection one level lower, to phylum identifier, before entering the name elevator, but

then we would also have had to invoke the transformation for an empty actual parameter

list and an empty actual argument list. By entering the text at phylum actual-name, we

have saved some time and effort by not having to bother with the empty parameter and

argument constructs. Our display now appears as in Figure 37.

We do not wish to hide or rename any concepts from the inherited module elevator,

so for each of those selections in turn we invoke the empty template transformation the

same way we did before.
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Current buffer: main

DEFINITION waitingpassenger
INHERIT elevator chide,.<rename>
INHERIT <hide><rename>

END

Positioned at hide empty addhide

Figure 37
After entering inherited module name elevator

Note that after invoking execute-command and entering an e followed by a carriage

return, the help pane still indicates the selection is positioned at hide ( also the same for

rename). This is because the hide (rename) that was replaced by a null statement was

the optional selection that was inserted by the editor when we executed forward-with-

optionals. When the null statement fills that node, the selection moves back up the

abstract-syntax tree to the hide (rename) within the template for inherits. By simply

excuting forward-with-optionals < AM or RETURN >, the placeholder <hide>

(<rename>) is replaced by the completing term (- null statement) and the selection is

advanced.

The same process is performed for the second INHERIT clause, with the name

passenger for the inherited module. Again, we do not wish to hide or rename any

concepts from the inherited module passenger, so we invoke the empty transformation

for each of these constructs.
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The selection is now positioned at imports, another optional phylum. The place-

holder term replaces the completing term on the display, and our screen looks like that

shown in Figure 38.

Current buffer: main

DEFINITION waitingpassenger
INHERIT elevator
INHERIT passenger
<Import>

END

Positioned at imports empty addimport

Figure 38
Selection positioned at phylum imports

We do not have any concepts we wish to import, so we invoke the empty trans-

formation. As we saw with phyla hide and rename, we must execute forward-with-

optionals after completing the transformation to advance the selection to export. We

will not export any concepts, so the identical process is performed for export as we did

for imports.

The selection is now positioned at concepts, which is declared as an optional list

phylum. The completing term for the first argument of concepts is displayed, which is

the prompt <concept> from phylum concept, as shown in Figure 39. Note that the help

pane indicates we are positioned at concepts, but we still have two template transfor-

mations enabled, type and value, which are associated with phylum concept. This
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feature minimizes the distinction between a singleton sublist and the list item itself, and

is true for any list phylum. [Ref. 10: p. 67]

Current buffer: main

DEFINITION waiting_.passenger
INHERIT elevator
INHERIT passenger
<concept>

END

Positioned at concepts type value

Figure 39
Prompt for entering a concept

We wish to add a concept that returns a value, so we invoke the execute-command

command < Al or TAB > and enter v and a carriage return to invoke the value

transformation. We are presented with the template for a concept that returns a value, as

shown in Figure 40.

The selection is positioned at formal-name, the first argument for phylum concept.

After executing forward-with-optionals, the selection is positioned at identifier. We

enter the name of our concept, waiting, and are presented with the display as shown in

Figure 41.

We do not have any formal parameters, so we invoke the transformation empty.

However, we do have a single argument to concept waiting. With the selection at

formal-arguments, we invoke the transformation fieldlist. This leaves the selection

positioned at field-list with transformation choices single and multiple. We invoke

transformation single and are presented with the display as shown in Figure 42.
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Current buffer : main

DEFINITION wafting-passenger
INHERIT elevator

INHERIT passenger

CONCEPT <formal_args> <where>
VALUE <formal-args>
<where>

END

Positioned at formal-name

Figure 40
Template for a concept returning a value

Current buffer : main

DEFINITION waiting-passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting<formal_parm><formalargs> <where>
VALUE <formal args>
<where>

END

Positioned at formal_.parameters empty fieldlist

Figure 41
Display after entering the concept name waiting
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Current buffer: main

DEFINITION waitingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT wafting(?) <where>
VALUE <formaLargs>
<where>

END

Positioned at field namelist collection

Figure 42
After invoking a single fieldlist

As we did with actualname, we will enter the complete text required to make up a

field, which consists of a namelist and a type-spec. We type p : passenger

(including the space either side of the colon) and enter a carriage return. Note that we

could have invoked the transformation namelist, which would have necessitated our

entering the name_list and typespec separately. As before, we elected to enter the

complete construct at the field node to save time and keystrokes.

The selection is now positioned at the first <where> prompt, with two transfor-

mations enabled, empty and addwhere. The display appears as in Figure 43.
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Current buffer: main

DEFINITION waftingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting(p : passenger) <where=.
VALUE <formalargs>
<where>

END

Positioned at where empty addwhere

Figure 43
After entering the formal argument (p passenger)

There is no WHERE clause that applies to the formal arguments, so we invoke

execute-command, type e and a carriage return to invoke the empty transformation.

We must also execute forward-with-optionals to remove the <where> prompt and

advance to the next selection.

The selection is now positioned at the second occurrence of formalarguments, the

prompt <formal-args> after the keyword VALUE. Two transformations are enabled,

empty and fieldlist. We invoke the fieldlist transformation, which replaces the string

<formal_args> with (<field>). The help pane indicates the current selection is fieldlist

with two transformations enabled, single and multiple. We invoke the single

transformation, and are presented with a screen as shown in Figure 44. Note that the

completing term/placeholder term for a field (i.e., ? ) has replaced the <field> prompt
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Current buffer: main

DEFINITION waitingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting(p : passenger)
VALUE (?)
<where>

END

Positioned at field namelist collection

Figure 44
After invoking the single transformation for fieldlist

Just as before, we can enter the entire field construct of a name-list and a

type spec separated by a free-standing colon. We enter b : boolean and a carriage

return to fill the field node of the parse tree.

At this point, we are called away by our boss to a meeting and we wish to save our

work to resume later. We execute the command write-named-file < ^X^W >; a pop-up

window overlays the bottom of the display screen for us to enter thefilename and format

parameters to the write-named-file command, as shown in Figure 45.

The selection is positioned at _file-name in the Write File Form window. We type

in the desired name (including any extension); for this example we choose the name

waltpass.spec. Just as in the object pane, we terminate text entry by entering a

carriage return. The selection advances to .file_type with two transformations enabled,
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text and structure. The default file format, structure, is already highlighted in the FILE

FORMAT: field. If you plan on doing more editing on a file, the recommended format in

which to save the file is structure. Text format is used to save the display as a printable

-.e. Since the default format is the one we want, no further entry is required. To

complete the execution of the write-named-file command with our selected parameters,

we must execute start-command < ESC-s >. This causes the command line to echo

"Wrote waitpass.spec", and the actual file to be written to the file system.

Current buffer : main

DEFINITION waiting-passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting(p : passenger)
VALUE (b: boolean)
<where>

END

---Current Form : Write File Form ------------------------ .....---- - -------------....------------------

1WRITE FILE: <file-name, FILE FORMAT: structure
IPositioned at _file-name

Figure 45
Pop-up Write File Form window

Note that we are still in the editor. To exit the editor, we simply type ^C, which

deactivates the editor and returns us to the Unix shell.

To recall our saved file back into the editor for further editing, we have two choices:

we can include the filename waitpass.spec as an argument to SPECDEF when starting
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up the editor, or we can start SPECDEF with no arguments and then execute the read-file

command < AXAR or AXAF >, which will cause a pop-up window to appear, similar to

the Write File Form window when we saved the file, in which we enter the filename. In

this example, we choose the former method.

The initial display this time includes the filename waitpass.spec in the title bar, the

message "Read waitpass.spec" on the command line, as much of the structure that will

fit in the object pane (in this case the entire file), and the indication in the help pane that

we are positioned at start. Figure 46 shows this display.

, Current buffer : waltpass.spec

Read waitpass.spec

DEFINITION waltingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waitlng(p : passenger)
VALUE (b: boolean)
<where>

END

Positioned at start

Figure 46
Reading an existing file into the editor

There are, again, two choices on how to proceed: we can either advance the selection

through the entire parse tree using forward-preorder < AN > or forward-with-

optionals < AM or RETURN >, or we can use end-of-file < ESC-> > to position the

selection at the rightmost leaf in the parse tree. We choose the latter option to save time,
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which now positions the selection where we left off during the previous editing session,

at the second <where> prompt within the construct for concept.

We invoke the transformation addwhere, which replaces the placeholder <where>

with the template for a WHERE clause. The selection is advanced to expressionlist

with two transformations enabled, single and multiple. We invoke the single transfor-

mation, as shown in Figure 47.

C urrent buffer: waltpass.spec

COMMAND. s

DEFINITION waiting-passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting(p : passenger)
VALUE (b : boolean)
WHERE <expressionlist>

END

!Positioned at expression_1st single multiple

Figure 47
Invoking the single transformation for expression list

The selection is no, positioned at expression. In the SPECDEF editor, phylum

expression has more template transformations available than can be listed in the default

size of the help pane (4 lines). To be able to see all possible transformation names, the

help pane must be enlarged by two lines. This is done by executing the enlarge-help

command < ESC-"Xz > twice, once or each line of enlargement. When this is done, the

screen will appear as in Figure 48. Notice that many of the transformation names are
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symbolic rather than alpha-numeric. Note also the completing/placeholder term for

expression, the symbol ?, which stands for an undefined expression.

Current buffer: waitpass.spec

DEFINITION waiting-passenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p: passenger)
VALUE (b boolean)
WHERE ?

END

Positioned at expression quantify actname @ ~ &
I implies iff < > =>=
~= ~< ~> <~>= -= == uminus

+ m / mod U append
inexp star collect range dot fl parens measure
time delay period constant lit_type illegal if_then

Figure 48
Expanded Help Pane for expression's transformations

The expression ve wish to enter is a quantified logic expression, so we begin by

invoking the quantify transformation. The placeholder ? is replaced by the template for

a quantified expression, as shown in Figure 49.

We invoke the all transformation, which replaces the placeholder <quantifier> with

the lexeme ALL and advances the selection to field-list. In this example, we want a

multiple fieldlist, so we invoke the multiple transformation. The resulting display

appears as in Figure 50.
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Current buffer : waltpass.spec

DEFINITION waiting-passenger
INHERIT elevator
INHERIT passenger

CONCEPT wading (p: passenger)
VALUE (b: boolean)
WHERE <quantlfier>(<field><restriction> ?)

END

Positioned at quantifier all some number sum product
set max min union intersect

Figure 49
After invoking the quantify transformation for expression

Current buffer : waitpass.spec

DEFINITION watingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p passenger)
VALUE (b :boolean)
WHERE ALL(<fleld>,?<restriction> ?)

END

Positioned at field list single multiple

Figure 50
After selecting multiple transformation for fieldlist

We now address each element of the fieldlist separately. For the first element,

which is itself a fieldlist, we now invoke the single transformation, which replaces the

placeholder <field> with the symbol ? and positions the selection at field.
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As we have done previously, we will enter the entire construct here to save time and

keystrokes; we enter p : passenger followed by a carriage return. This enters the text

and advances the selection to the second placeholder for phylum field, the second ?.

Here we enter f : floor and a carriage return. The selection is now advanced to

restriction, as shown in Figure 51.

Current buffer: waltpass.spec

DEFINITION waftingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p passenger)
VALUE (b: boolean)
WHERE ALL(p : passenger, f : floor-crestriction> ::?)

END

Positioned at restriction empty suchthat

Figure 51
After entering a multiple field-list

We do not have any restrictions on these elements, so we invoke the empty transfor-

mation. This places the selection at expression following the bind (::) symbol.

The expression we wish to have apply here is a combination of several "and'd"

expressions that imply a predicate expression. We start by invoking the & transfor-

mation. This replaces the ? with the string ? & ?. We are still positioned at expression,

so we now invoke the actname transformation by executing the execute-command

command < ^l or TAB > and then typing ac, which is sufficient to make our choice

unambiguous. The first placeholder for expression is replaced by the placeholder
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<actualarg>, and the selection is advanced to actualname. We enter the name of the

predicate we wish to apply here, waiting. The selection is advanced to

actual-arguments, with two transformations enabled, empty and arglist. We invoke

the arglist transformation and are presented with the display as shown in Figure 52.

Current butter : waltpass.spec

DEFINITION watingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p: passenger)
VALUE (b: boolean)
WHERE ALL(p : passenger, f :floor waiting(carg>) & ?)

END

Positioned at arg_list single multiple

Figure 52
After invoking arglist transformation for actual-arguments

We enter the single argument p. We then advance the selection to expression using

forward-with-optionals < "M or RETURN >, and invoke the & transformation once

more. Proceeding similarly to the sequence described above, we enter the various text

elements until we have built the expression at(p , f).

Advancing the selection again to expression, we now invoke the implies transfor-

mation. With the selection positioned at the ? on the left side of the => symbol, we first

invoke the - transformation (the symbol - means "not"). Then we proceed similarly to

the sequence stated previously until we have built the expression -buttonjit(f).
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Once more advancing the selection, we now complete the expression on the right side

of the => symbol until we have built the expression pushes-button(p, f). Our concept

waiting is now complete, as shown in Figure 53.

Current buffer: waltpasa.spec

DEFINITION waitingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p: passenger)
VALUE (b: boolean)
WHERE ALL(p : passenger , f : floor

:: waiting(p) & at(p, f) & -button lit(f) => pushesbutton(p, f))
<concepb

END

Positioned at concepts type value

Figure 53
The completed concept waiting

Following a similar procedure, we add a second concept, pushes-button. The

complete module waiting.passenger now looks like Figure 54.

We are now ready to save our module for printout. We invoke the write-named-file

command < AXAW > as before. The current filename waitpass.spec already fills the

_file-name field because the filename is associated with the current buffer, so we simply

enter a carriage return. This time we want to save the file in text format so we can print it

out. We invoke execute-command < A1 or TAB > and type t for the text transformation.

Finally, we execute start-command < ESC-s > to actually write the file.
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Current buffer : waltpass.spec

DEFINITION waftingpassenger
INHERIT elevator
INHERIT passenger

CONCEPT waiting (p: passenger)
VALUE (b boolean)
WHERE ALL(p : passenger, f : floor

:: waiting(p) & at(p, f) & -buttonIit(f) -> pushes button(p, f)

CONCEPT pushesbutton(p: passenger, f : floor)

VALUE (b: boolean)

END

Positioned at where empty addwhere

Figure 54
The complete module waitingpassenger

Since we used the same filename as the previously saved structure formatted file, the

contents of that file are overwritten by the text format of the current buffer. Now we can

exit the editor by executing the exit command < AC >.

The file waitpass.spec is now saved as a standard ASCII file that appears the same

as the display in the object pane. The file can be printed as you would any text file.

If the reddei i. still unsure about any of the commands that were used in this sample

editing session, review Section I.E on the commonly used commands. For a complete

list of all commands available with full descriptions, see Chapter 3 of The Synthesizer

Generator Reference Manual [Ref. 11: pp. 90-111].
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APPENDIX D

LIST OF EDITOR COMMANDS

The following is a complete list of all the available editor commands for any editor

created by the Synthesizer Generator. Most of the commands have an associated key-

binding. Those that don't have a key-binding are indicated by (none). See Chapter 3 of

The Synthesizer Generator Reference Manual for a full description of each command.

[Ref. 11 ]

advance-after-transform (none)
advance-after-parse (none)
apropos < ESC-? >
ascend-to- parent < ESC-\>
backward-preorder < AP >
backward-sibling < ESCAP >
backward-sibling-with-optionals < ESC-AB >
backward-with-optionals < AH >
beginning-of-file < ESC-< >
beginning-of- line < AA >
cancel-command < ESC-c >
column-left (none)
column-right (none)
copy-from-clipped < ESC-AY >
copy-text-from-clipped < AT >
copy-to-clipped < ESCAW >
cut-to-clipped <A w>
delete-next-character < AD >
delete-other-windows < A X >

delete-previous-character <DEL>
delete-selection < AK >
delete-window < AXd >
dump-off (none)
dump-on (none)
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break-to-debugger (none)
alternate-un parsing-on (none)
alternate-unparsing-toggle < ESC-e >
end-of-file < ESC-> >
end-of-line < AE >
enlarge-help< S-X>
enlarge-window < ACZ >

erase-to-beginning-of-line < ESC-DEL >
erase-to-end-of-line < ESC-d >
execute-command < Al >
execute-monitor-command < AX! >

exit < AC >
extend < ESC-(>
extend-start (none)
extend-stop (none)
extend-transition < ESC-X >
forward -after- parse (none)
forward- preorder < AN >
forward-sibling < ESCA N >
forward-sibling-with-optionals < E SCAM >
forward-with-optionals < AM >
help-off (none)
help-on (none)
illegal -operation < AG >
insert-file < AXAI >

left < AB >
list- buffers < AXAB >
new- buffer (none)
new-line < AJ>

next-line < AZ >
next-page < AV >
next-win dow < AXn >
page-left < ESC-{ >
page-right < ESC-) >
paste-from-clipped < Ay >

pointer-bottom-of-screen < ESC-. >
pointer-dowvn < ESC-n >
pointer-left < ESC-b >
pointer-long- down (none)
pointer-lon g-left (none)
pointer-long-right (none)
pointer-long-up (none)
pointer-right < ESC-f >
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pointer-top-of-screen < ESC-, >
pointer-up < ESC-p >
previous-line < ESC-z >
previous-page < ESC-v >
previous-window < AXP >

read-file < AXAR >

redraw-display < AL >

repeat-command < ESC-r>
return-to-monitor<A >

right <AF >

scroll -to- bottom (none)
scroll-to-top (none)
search-forward < ESC-AF >
search-reverse < ESCA R >
select < ESC-@a- >
select-start (none)
select-stop (none)
selection-to-left (none)
selection-to-top < ESC-! >
select-transition < ESC-t >
set-parameters (none)
show-attribute (none)
shrink-help < ESCAXAZ >

shrink-window < AXAZ >

spill (none)
split-current-window< X>

start-command < ESC-s >
switch-to- buffer < AXb >
text-capture (none)
undo < AXAU >

alternate-un parsing-off (none)
visit-file < AXAV >

write-attribute (none)
write-current-file (none)
write-file-exit < AXAF >
write-modified -iles < AXAM >

write-named-file < AXAW >

write-selection-to-file (none)
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